diff --git a/dsSchoolBuddy/ElasticSearch/T6_SelectByVector.py b/dsSchoolBuddy/ElasticSearch/T6_SelectByVector.py index 368099f0..9c4ca8ed 100644 --- a/dsSchoolBuddy/ElasticSearch/T6_SelectByVector.py +++ b/dsSchoolBuddy/ElasticSearch/T6_SelectByVector.py @@ -1,5 +1,4 @@ import json -import warnings import requests from langchain_openai import OpenAIEmbeddings from pydantic import SecretStr @@ -7,16 +6,6 @@ from pydantic import SecretStr from Config import Config from ElasticSearch.Utils.EsSearchUtil import EsSearchUtil -# 抑制HTTPS相关警告 -warnings.filterwarnings('ignore', message='Connecting to .* using TLS with verify_certs=False is insecure') -warnings.filterwarnings('ignore', message='Unverified HTTPS request is being made to host') - -# 从配置中获取重排模型参数 -RERANK_MODEL = Config.RERANK_MODEL -RERANK_BASE_URL = Config.RERANK_BASE_URL -RERANK_BINDING_API_KEY = Config.RERANK_BINDING_API_KEY - - def get_query_embedding(query: str) -> list: """ 将查询文本转换为向量 @@ -99,7 +88,7 @@ def rerank_results(query: str, results: list) -> list: # 准备重排请求数据 rerank_data = { - "model": RERANK_MODEL, + "model": Config.RERANK_MODEL, "query": query, "documents": [result['_source']['user_input'] for result in results], "top_n": len(results) @@ -108,11 +97,11 @@ def rerank_results(query: str, results: list) -> list: # 调用重排API headers = { "Content-Type": "application/json", - "Authorization": f"Bearer {RERANK_BINDING_API_KEY}" + "Authorization": f"Bearer {Config.RERANK_BINDING_API_KEY}" } try: - response = requests.post(RERANK_BASE_URL, headers=headers, data=json.dumps(rerank_data)) + response = requests.post(Config.RERANK_BASE_URL, headers=headers, data=json.dumps(rerank_data)) response.raise_for_status() rerank_result = response.json()