main
HuangHai 2 weeks ago
parent 3c5ccd7e18
commit 28fae292b7

@ -1,49 +1,67 @@
1. 题目序号1 ### 题目1
2. 题目内容:已知集合 $A=\left\{x \mid -5 < x^{3} < 5\right\}, B=\left\{-3,-1,0,2,3\right\}$,则 $A \cap B=$
3. 选项: **题目序号**: 1
A. $\{-1,0\}$ **题目内容**: 已知集合 $A=\left\{x \mid -5 < x^{3} < 5\right\}, B=\left\{-3,-1,0,2,3\right\}$,则 $A \cap B=$
B. $\{2,3\}$ **选项**:
C. $\{-3,-1,0\}$ A. $\{-1,0\}$
D. $\{-1,0,2\}$ B. $\{2,3\}$
4. 答案A C. $\{-3,-1,0\}$
5. 解析:$A \cap B=\{-1,0\}$,选 A。 D. $\{-1,0,2\}$
**答案**: A
1. 题目序号2 **解析**: $A \cap B=\{-1,0\}$,选 A。
2. 题目内容:若 $\frac{2}{z-1}=1+i$,则 $z=$
3. 选项: ---
A. $-1-i$
B. $-1+i$ ### 题目2
C. $1-i$
D. $1+i$ **题目序号**: 2
4. 答案C **题目内容**: 若 $\frac{2}{z-1}=1+i$,则 $z=$
5. 解析:无 **选项**:
A. $-1-i$
1. 题目序号3 B. $-1+i$
2. 题目内容:已知向量 $\vec{a}=(0,1)$$\vec{b}=(2,x)$,若 $\vec{b} \perp (\vec{b}-4\vec{a})$,则 $x=$ C. $1-i$
3. 选项: D. $1+i$
A. $-2$ **答案**: C
B. $-1$ **解析**: 无
C. $1$
D. $2$ ---
4. 答案D
5. 解析:$\vec{b}-4\vec{a}=(2,x-4)$$\vec{b} \perp (\vec{b}-4\vec{a})$$\therefore \vec{b}(\vec{b}-4\vec{a})=0$$\therefore 4+x(x-4)=0$$\therefore x=2$,选 D。 ### 题目3
1. 题目序号4 **题目序号**: 3
2. 题目内容:已知 $\cos(\alpha+\beta)=m$$\tan \alpha \tan \beta=2$,则 $\cos(\alpha-\beta)=$ **题目内容**: 已知向量 $\vec{a}=(0,1)$$\vec{b}=(2,x)$,若 $\vec{b} \perp (\vec{b}-4\vec{a})$,则 $x=$
3. 选项: **选项**:
A. $-3m$ A. $-2$
B. $-\frac{m}{3}$ B. $-1$
C. $\frac{m}{3}$ C. $1$
D. $3m$ D. $2$
4. 答案A **答案**: D
5. 解析:$\left\{\begin{array}{l}\cos \alpha \cos \beta-\sin \alpha \sin \beta=m \\\frac{\sin \alpha \sin \beta}{\cos \alpha \cos \beta}=2\end{array}\right.$$\therefore \left\{\begin{array}{l}\sin \alpha \sin \beta=-2m \\\cos \alpha \cos \beta=-m\end{array}\right.$$\cos(\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta=-m-2m=-3m$,选 A。 **解析**: $\vec{b}-4\vec{a}=(2,x-4)$$\vec{b} \perp (\vec{b}-4\vec{a})$$\therefore \vec{b}(\vec{b}-4\vec{a})=0$$\therefore 4+x(x-4)=0$$\therefore x=2$,选 D。
1. 题目序号5 ---
2. 题目内容:已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为 $\sqrt{3}$,则圆锥的体积为
3. 选项: ### 题目4
A. $2\sqrt{3}\pi$
B. $3\sqrt{3}\pi$ **题目序号**: 4
C. $6\sqrt{3}\pi$ **题目内容**: 已知 $\cos(\alpha+\beta)=m$$\tan \alpha \tan \beta=2$,则 $\cos(\alpha-\beta)=$
D. $9\sqrt{3}\pi$ **选项**:
4. 答案B A. $-3m$
5. 解析:设它们底面半径为 $r$,圆锥母线 $l$$\therefore 2\pi r\sqrt{3}=\pi rl$$\therefore l=\sqrt{3}$,则圆锥的体积为 $\frac{1}{3}\pi r^{2}h$。 B. $-\frac{m}{3}$
C. $\frac{m}{3}$
D. $3m$
**答案**: A
**解析**: $\left\{\begin{array}{l}\cos \alpha \cos \beta-\sin \alpha \sin \beta=m \\\frac{\sin \alpha \sin \beta}{\cos \alpha \cos \beta}=2\end{array}\right.$$\therefore \left\{\begin{array}{l}\sin \alpha \sin \beta=-2m \\\cos \alpha \cos \beta=-m\end{array}\right.$$\cos(\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta=-m-2m=-3m$,选 A。
---
### 题目5
**题目序号**: 5
**题目内容**: 已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为 $\sqrt{3}$,则圆锥的体积为
**选项**:
A. $2\sqrt{3}\pi$
B. $3\sqrt{3}\pi$
C. $6\sqrt{3}\pi$
D. $9\sqrt{3}\pi$
**答案**: B
**解析**: 设它们底面半径为 $r$,圆锥母线 $l$$\therefore 2\pi r\sqrt{3}=\pi rl$$\therefore l=\sqrt{3}$,则圆锥的体积为 $\frac{1}{3}\pi r^{2}h$。
Loading…
Cancel
Save