main
HuangHai 1 month ago
parent 3a8b0214ca
commit 1fc0d454d7

@ -17,11 +17,12 @@ from pydantic import BaseModel, Field, ValidationError
from starlette.responses import StreamingResponse
from Config.Config import MS_MODEL_PATH, MS_MODEL_LIMIT, MS_HOST, MS_PORT, MS_MAX_CONNECTIONS, MS_NPROBE, \
MS_COLLECTION_NAME
MS_COLLECTION_NAME, ES_CONFIG
from Milvus.Utils.MilvusCollectionManager import MilvusCollectionManager
from Milvus.Utils.MilvusConnectionPool import *
from Milvus.Utils.MilvusConnectionPool import MilvusConnectionPool
from Util.ALiYunUtil import ALiYunUtil
from Util.EsSearchUtil import EsSearchUtil
# 初始化日志
logger = logging.getLogger(__name__)
@ -36,13 +37,12 @@ def html_to_word_pandoc(html_file, output_file):
subprocess.run(['pandoc', html_file, '-o', output_file])
@asynccontextmanager
async def lifespan(app: FastAPI):
# 初始化阿里云大模型工具
app.state.aliyun_util = ALiYunUtil()
yield
pass
# 清理资源
await app.state.aliyun_util.close()
app = FastAPI(lifespan=lifespan)
# 挂载静态文件目录
@ -80,7 +80,7 @@ async def save_to_word(request: Request):
f.write(html_content)
# 使用pandoc转换
output_file = os.path.join(tempfile.gettempdir(), "小学数学问答.docx")
output_file = os.path.join(tempfile.gettempdir(), "【理想大模型】问答.docx")
subprocess.run(['pandoc', temp_html, '-o', output_file], check=True)
# 读取生成的Word文件
@ -88,7 +88,7 @@ async def save_to_word(request: Request):
stream = BytesIO(f.read())
# 返回响应
encoded_filename = urllib.parse.quote("小学数学问答.docx")
encoded_filename = urllib.parse.quote("【理想大模型】问答.docx")
return StreamingResponse(
stream,
media_type="application/vnd.openxmlformats-officedocument.wordprocessingml.document",
@ -112,8 +112,84 @@ async def save_to_word(request: Request):
@app.post("/api/rag")
async def rag_stream(request: Request):
pass
# todo
try:
data = await request.json()
query = data.get('query', '')
query_tags = data.get('tags', [])
# 获取EsSearchUtil实例
es_search_util = EsSearchUtil(ES_CONFIG)
# 执行混合搜索
es_conn = es_search_util.es_pool.get_connection()
try:
# 向量搜索
query_embedding = es_search_util.text_to_embedding(query)
vector_results = es_conn.search(
index=ES_CONFIG['index_name'],
body={
"query": {
"script_score": {
"query": {
"bool": {
"should": [
{
"terms": {
"tags.tags": query_tags
}
}
],
"minimum_should_match": 1
}
},
"script": {
"source": "double score = cosineSimilarity(params.query_vector, 'embedding'); return score >= 0 ? score : 0",
"params": {"query_vector": query_embedding}
}
}
},
"size": 3
}
)
# 文本精确搜索
text_results = es_conn.search(
index=ES_CONFIG['index_name'],
body={
"query": {
"bool": {
"must": [
{
"match": {
"user_input": query
}
},
{
"terms": {
"tags.tags": query_tags
}
}
]
}
},
"size": 3
}
)
# 合并结果
results = {
"vector_results": [hit['_source'] for hit in vector_results['hits']['hits']],
"text_results": [hit['_source'] for hit in text_results['hits']['hits']]
}
return results
finally:
es_search_util.es_pool.release_connection(es_conn)
except Exception as e:
logger.error(f"RAG search error: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))

Loading…
Cancel
Save