From 1fc0d454d7bafbcb31e169c327a0f27f0168689c Mon Sep 17 00:00:00 2001 From: HuangHai <10402852@qq.com> Date: Fri, 27 Jun 2025 15:13:47 +0800 Subject: [PATCH] 'commit' --- dsRag/StartEs.py | 92 +++++++++++++++++++++++++++++++++++++++++++----- 1 file changed, 84 insertions(+), 8 deletions(-) diff --git a/dsRag/StartEs.py b/dsRag/StartEs.py index d7b5d900..a7e877b3 100644 --- a/dsRag/StartEs.py +++ b/dsRag/StartEs.py @@ -17,11 +17,12 @@ from pydantic import BaseModel, Field, ValidationError from starlette.responses import StreamingResponse from Config.Config import MS_MODEL_PATH, MS_MODEL_LIMIT, MS_HOST, MS_PORT, MS_MAX_CONNECTIONS, MS_NPROBE, \ - MS_COLLECTION_NAME + MS_COLLECTION_NAME, ES_CONFIG from Milvus.Utils.MilvusCollectionManager import MilvusCollectionManager from Milvus.Utils.MilvusConnectionPool import * from Milvus.Utils.MilvusConnectionPool import MilvusConnectionPool from Util.ALiYunUtil import ALiYunUtil +from Util.EsSearchUtil import EsSearchUtil # 初始化日志 logger = logging.getLogger(__name__) @@ -36,13 +37,12 @@ def html_to_word_pandoc(html_file, output_file): subprocess.run(['pandoc', html_file, '-o', output_file]) -@asynccontextmanager async def lifespan(app: FastAPI): # 初始化阿里云大模型工具 app.state.aliyun_util = ALiYunUtil() yield - pass - + # 清理资源 + await app.state.aliyun_util.close() app = FastAPI(lifespan=lifespan) # 挂载静态文件目录 @@ -80,7 +80,7 @@ async def save_to_word(request: Request): f.write(html_content) # 使用pandoc转换 - output_file = os.path.join(tempfile.gettempdir(), "小学数学问答.docx") + output_file = os.path.join(tempfile.gettempdir(), "【理想大模型】问答.docx") subprocess.run(['pandoc', temp_html, '-o', output_file], check=True) # 读取生成的Word文件 @@ -88,7 +88,7 @@ async def save_to_word(request: Request): stream = BytesIO(f.read()) # 返回响应 - encoded_filename = urllib.parse.quote("小学数学问答.docx") + encoded_filename = urllib.parse.quote("【理想大模型】问答.docx") return StreamingResponse( stream, media_type="application/vnd.openxmlformats-officedocument.wordprocessingml.document", @@ -112,8 +112,84 @@ async def save_to_word(request: Request): @app.post("/api/rag") async def rag_stream(request: Request): - pass - # todo + try: + data = await request.json() + query = data.get('query', '') + query_tags = data.get('tags', []) + + # 获取EsSearchUtil实例 + es_search_util = EsSearchUtil(ES_CONFIG) + + # 执行混合搜索 + es_conn = es_search_util.es_pool.get_connection() + try: + # 向量搜索 + query_embedding = es_search_util.text_to_embedding(query) + vector_results = es_conn.search( + index=ES_CONFIG['index_name'], + body={ + "query": { + "script_score": { + "query": { + "bool": { + "should": [ + { + "terms": { + "tags.tags": query_tags + } + } + ], + "minimum_should_match": 1 + } + }, + "script": { + "source": "double score = cosineSimilarity(params.query_vector, 'embedding'); return score >= 0 ? score : 0", + "params": {"query_vector": query_embedding} + } + } + }, + "size": 3 + } + ) + + # 文本精确搜索 + text_results = es_conn.search( + index=ES_CONFIG['index_name'], + body={ + "query": { + "bool": { + "must": [ + { + "match": { + "user_input": query + } + }, + { + "terms": { + "tags.tags": query_tags + } + } + ] + } + }, + "size": 3 + } + ) + + # 合并结果 + results = { + "vector_results": [hit['_source'] for hit in vector_results['hits']['hits']], + "text_results": [hit['_source'] for hit in text_results['hits']['hits']] + } + + return results + + finally: + es_search_util.es_pool.release_connection(es_conn) + + except Exception as e: + logger.error(f"RAG search error: {str(e)}") + raise HTTPException(status_code=500, detail=str(e))