'commit'
This commit is contained in:
@@ -16,18 +16,18 @@ GLM_API_KEY = "sk-pbqibyjwhrgmnlsmdygplahextfaclgnedetybccknxojlyl"
|
||||
GLM_MODEL_NAME = "THUDM/GLM-4.1V-9B-Thinking"
|
||||
|
||||
# 阿里云API信息【YLT】
|
||||
#ALY_LLM_API_KEY = "sk-f6da0c787eff4b0389e4ad03a35a911f"
|
||||
# ALY_LLM_API_KEY = "sk-f6da0c787eff4b0389e4ad03a35a911f"
|
||||
# 阿里云API信息【绘智科技】
|
||||
ALY_LLM_API_KEY = "sk-01d13a39e09844038322108ecdbd1bbc"
|
||||
ALY_LLM_BASE_URL = "https://dashscope.aliyuncs.com/compatible-mode/v1"
|
||||
ALY_LLM_MODEL_NAME = "qwen-plus"
|
||||
|
||||
|
||||
# 通义千问
|
||||
# ALY_LLM_MODEL_NAME = "qwen-plus"
|
||||
# Kimi K2大模型
|
||||
ALY_LLM_MODEL_NAME = "Moonshot-Kimi-K2-Instruct"
|
||||
|
||||
# 智谱的API KEY【吴缤申请个人版免费】
|
||||
ZHIPU_API_KEY = "78dc1dfe37e04f29bd4ca9a49858a969.gn7TIZTfzpY35nx9"
|
||||
|
||||
# GPTNB的API KEY
|
||||
GPTNB_API_KEY = "sk-amQHwiEzPIZIB2KuF5A10dC23a0e4b02B48a7a2b6aFa0662"
|
||||
GPTNB_BASE_URL="https://goapi.gptnb.ai"
|
||||
|
||||
GPTNB_BASE_URL = "https://goapi.gptnb.ai"
|
||||
|
Binary file not shown.
BIN
dsRagAnything/Doc/GeoGebra5经典版指令汇编201903061.pdf
Normal file
BIN
dsRagAnything/Doc/GeoGebra5经典版指令汇编201903061.pdf
Normal file
Binary file not shown.
@@ -3,10 +3,13 @@ from raganything import RAGAnything, RAGAnythingConfig
|
||||
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
||||
from lightrag.utils import EmbeddingFunc
|
||||
|
||||
import Config.Config
|
||||
|
||||
|
||||
async def main():
|
||||
# 设置 API 配置
|
||||
api_key = "your-api-key"
|
||||
base_url = "your-base-url" # 可选
|
||||
api_key = Config.Config.ALY_LLM_API_KEY
|
||||
base_url = Config.Config.ALY_LLM_BASE_URL
|
||||
|
||||
# 创建 RAGAnything 配置
|
||||
config = RAGAnythingConfig(
|
||||
@@ -21,7 +24,7 @@ async def main():
|
||||
# 定义 LLM 模型函数
|
||||
def llm_model_func(prompt, system_prompt=None, history_messages=[], **kwargs):
|
||||
return openai_complete_if_cache(
|
||||
"gpt-4o-mini",
|
||||
Config.Config.ALY_LLM_MODEL_NAME,
|
||||
prompt,
|
||||
system_prompt=system_prompt,
|
||||
history_messages=history_messages,
|
||||
@@ -37,19 +40,19 @@ async def main():
|
||||
# 如果提供了messages格式(用于多模态VLM增强查询),直接使用
|
||||
if messages:
|
||||
return openai_complete_if_cache(
|
||||
"gpt-4o",
|
||||
Config.Config.GLM_MODEL_NAME,
|
||||
"",
|
||||
system_prompt=None,
|
||||
history_messages=[],
|
||||
messages=messages,
|
||||
api_key=api_key,
|
||||
base_url=base_url,
|
||||
api_key=Config.Config.GLM_API_KEY,
|
||||
base_url=Config.Config.GLM_BASE_URL,
|
||||
**kwargs,
|
||||
)
|
||||
# 传统单图片格式
|
||||
elif image_data:
|
||||
return openai_complete_if_cache(
|
||||
"gpt-4o",
|
||||
Config.Config.GLM_MODEL_NAME,
|
||||
"",
|
||||
system_prompt=None,
|
||||
history_messages=[],
|
||||
@@ -72,8 +75,8 @@ async def main():
|
||||
if image_data
|
||||
else {"role": "user", "content": prompt},
|
||||
],
|
||||
api_key=api_key,
|
||||
base_url=base_url,
|
||||
api_key=Config.Config.GLM_API_KEY,
|
||||
base_url=Config.Config.GLM_BASE_URL,
|
||||
**kwargs,
|
||||
)
|
||||
# 纯文本格式
|
||||
@@ -82,13 +85,13 @@ async def main():
|
||||
|
||||
# 定义嵌入函数
|
||||
embedding_func = EmbeddingFunc(
|
||||
embedding_dim=3072,
|
||||
max_token_size=8192,
|
||||
embedding_dim=Config.Config.EMBED_DIM,
|
||||
max_token_size=Config.Config.EMBED_MAX_TOKEN_SIZE,
|
||||
func=lambda texts: openai_embed(
|
||||
texts,
|
||||
model="text-embedding-3-large",
|
||||
api_key=api_key,
|
||||
base_url=base_url,
|
||||
model=Config.Config.EMBED_MODEL_NAME,
|
||||
api_key=Config.Config.EMBED_API_KEY,
|
||||
base_url=Config.Config.EMBED_BASE_URL,
|
||||
),
|
||||
)
|
||||
|
||||
@@ -102,7 +105,7 @@ async def main():
|
||||
|
||||
# 处理文档
|
||||
await rag.process_document_complete(
|
||||
file_path="path/to/your/document.pdf",
|
||||
file_path="./Doc/GeoGebra5经典版指令汇编201903061.pdf",
|
||||
output_dir="./output",
|
||||
parse_method="auto"
|
||||
)
|
||||
@@ -115,19 +118,6 @@ async def main():
|
||||
)
|
||||
print("文本查询结果:", text_result)
|
||||
|
||||
# 多模态查询 - 包含具体多模态内容的查询
|
||||
multimodal_result = await rag.aquery_with_multimodal(
|
||||
"分析这个性能数据并解释与现有文档内容的关系",
|
||||
multimodal_content=[{
|
||||
"type": "table",
|
||||
"table_data": """系统,准确率,F1分数
|
||||
RAGAnything,95.2%,0.94
|
||||
基准方法,87.3%,0.85""",
|
||||
"table_caption": "性能对比结果"
|
||||
}],
|
||||
mode="hybrid"
|
||||
)
|
||||
print("多模态查询结果:", multimodal_result)
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
Reference in New Issue
Block a user