From 058f59b71c58f214cc87dc0b32bb71f6a6eaba34 Mon Sep 17 00:00:00 2001 From: HuangHai <10402852@qq.com> Date: Fri, 27 Jun 2025 15:06:40 +0800 Subject: [PATCH] 'commit' --- dsRag/ElasticSearch/T6_XiangLiangQuery.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/dsRag/ElasticSearch/T6_XiangLiangQuery.py b/dsRag/ElasticSearch/T6_XiangLiangQuery.py index 642866fd..428a7015 100644 --- a/dsRag/ElasticSearch/T6_XiangLiangQuery.py +++ b/dsRag/ElasticSearch/T6_XiangLiangQuery.py @@ -8,7 +8,7 @@ logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) # 初始化EsSearchUtil -es_search_util = EsSearchUtil(ES_CONFIG) +esClient = EsSearchUtil(ES_CONFIG) def main(): @@ -19,12 +19,12 @@ def main(): print(f"原始查询文本: {query}") # 执行混合搜索 - es_conn = es_search_util.es_pool.get_connection() + es_conn = esClient.es_pool.get_connection() try: # 向量搜索 print("\n=== 向量搜索阶段 ===") print("1. 文本分词和向量化处理中...") - query_embedding = es_search_util.text_to_embedding(query) + query_embedding = esClient.text_to_embedding(query) print(f"2. 生成的查询向量维度: {len(query_embedding)}") print(f"3. 前3维向量值: {query_embedding[:3]}") @@ -99,7 +99,7 @@ def main(): # print(f" 详细: {hit['_source']['tags']['full_content']}") finally: - es_search_util.es_pool.release_connection(es_conn) + esClient.es_pool.release_connection(es_conn) if __name__ == "__main__": main()