Files
dsProject/dsLightRag/Volcengine/chat.py

117 lines
4.6 KiB
Python
Raw Normal View History

2025-09-07 07:25:00 +08:00
import json
2025-09-07 07:37:09 +08:00
from VikingDBMemoryService import VikingDBMemoryService, initialize_services, ensure_collection_exists, search_relevant_memories
2025-09-07 07:25:00 +08:00
2025-09-07 07:27:53 +08:00
"""
在记忆库准备好后我们先模拟一段包含两轮的完整对话
对话结束后把这段对话历史消息写入记忆库然后再开启一个新话题提出和刚才相关的问题
AI 就能用刚写入的记忆来回答
注意首次写入需要 35 分钟建立索引这段时间内检索会报错
"""
2025-09-07 07:25:00 +08:00
def handle_conversation_turn(memory_service, llm_client, collection_name, user_id, user_message, conversation_history):
"""处理一轮对话包括记忆搜索和LLM响应。"""
print("\n" + "=" * 60)
print(f"用户: {user_message}")
relevant_memories = search_relevant_memories(memory_service, collection_name, user_id, user_message)
system_prompt = "你是一个富有同情心、善于倾听的AI伙伴拥有长期记忆能力。你的目标是为用户提供情感支持和温暖的陪伴。"
if relevant_memories:
memory_context = "\n".join(
[f"- {json.dumps(mem['memory_info'], ensure_ascii=False)}" for mem in relevant_memories])
system_prompt += f"\n\n这是我们过去的一些对话记忆,请参考:\n{memory_context}\n\n请利用这些信息来更好地理解和回应用户。"
print("AI正在思考...")
try:
messages = [{"role": "system", "content": system_prompt}] + conversation_history + [
{"role": "user", "content": user_message}]
completion = llm_client.chat.completions.create(
model="doubao-seed-1-6-flash-250715",
messages=messages
)
assistant_reply = completion.choices[0].message.content
except Exception as e:
print(f"LLM调用失败: {e}")
assistant_reply = "抱歉,我现在有点混乱,无法回应。我们可以稍后再聊吗?"
print(f"伙伴: {assistant_reply}")
conversation_history.extend([
{"role": "user", "content": user_message},
{"role": "assistant", "content": assistant_reply}
])
return assistant_reply
def archive_conversation(memory_service, collection_name, user_id, assistant_id, conversation_history, topic_name):
"""将对话历史归档到记忆数据库。"""
if not conversation_history:
print("没有对话可以归档。")
return False
print(f"\n正在归档关于 '{topic_name}' 的对话...")
session_id = f"{topic_name}_{int(time.time())}"
metadata = {
"default_user_id": user_id,
"default_assistant_id": assistant_id,
"time": int(time.time() * 1000)
}
try:
memory_service.add_session(
collection_name=collection_name,
session_id=session_id,
messages=conversation_history,
metadata=metadata
)
print(f"对话已成功归档会话ID: {session_id}")
print("正在等待记忆索引更新...")
return True
except Exception as e:
print(f"归档对话失败: {e}")
return False
def main():
print("开始端到端记忆测试...")
try:
memory_service, llm_client = initialize_services()
collection_name = "emotional_support"
2025-09-07 07:27:53 +08:00
user_id = "xiaoming" # 用户ID:小明
assistant_id = "assistant1" # 助手ID:助手1
2025-09-07 07:25:00 +08:00
ensure_collection_exists(memory_service, collection_name)
except Exception as e:
print(f"初始化失败: {e}")
return
print("\n--- 阶段 1: 初始对话 ---")
initial_conversation_history = []
handle_conversation_turn(
memory_service, llm_client, collection_name, user_id,
"你好我是小明今年18岁但压力好大。",
initial_conversation_history
)
handle_conversation_turn(
memory_service, llm_client, collection_name, user_id,
"马上就要高考了,家里人的期待好高。",
initial_conversation_history
)
print("\n--- 阶段 2: 归档记忆 ---")
archive_conversation(
memory_service, collection_name, user_id, assistant_id,
initial_conversation_history, "study_stress_discussion"
)
print("\n--- 阶段 3: 验证记忆 ---")
verification_conversation_history = []
handle_conversation_turn(
memory_service, llm_client, collection_name, user_id,
"我最近很焦虑,不知道该怎么办。",
verification_conversation_history
)
print("\n端到端记忆测试完成!")
if __name__ == "__main__":
main()