You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
|
|
|
|
import datetime
|
|
|
|
|
|
|
|
|
|
from elasticsearch import Elasticsearch
|
|
|
|
|
|
|
|
|
|
from Config.Config import ES_CONFIG
|
|
|
|
|
from T2_Txt2Vec import text_to_embedding
|
|
|
|
|
from Util.EsMappingUtil import create_vector_index # 导入工具函数
|
|
|
|
|
|
|
|
|
|
# 初始化ES连接
|
|
|
|
|
es = Elasticsearch(
|
|
|
|
|
hosts=ES_CONFIG["hosts"],
|
|
|
|
|
basic_auth=ES_CONFIG["basic_auth"],
|
|
|
|
|
verify_certs=ES_CONFIG["verify_certs"],
|
|
|
|
|
ssl_show_warn=ES_CONFIG["ssl_show_warn"]
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
def save_to_es(text, index_name="knowledge_base"):
|
|
|
|
|
"""将文本向量化后保存到ES"""
|
|
|
|
|
# 检查是否已存在相同文本
|
|
|
|
|
query = {
|
|
|
|
|
"query": {
|
|
|
|
|
"term": {
|
|
|
|
|
"text.keyword": {
|
|
|
|
|
"value": text
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
exists = es.search(index=index_name, body=query)
|
|
|
|
|
if exists["hits"]["total"]["value"] > 0:
|
|
|
|
|
print(f"文档已存在,跳过保存: {text}")
|
|
|
|
|
return exists["hits"]["hits"][0]["_id"] # 返回现有文档ID
|
|
|
|
|
|
|
|
|
|
# 保存新文档
|
|
|
|
|
vector = text_to_embedding(text)
|
|
|
|
|
doc = {
|
|
|
|
|
"text": text,
|
|
|
|
|
"vector": vector,
|
|
|
|
|
"timestamp": datetime.datetime.now().isoformat()
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
res = es.index(index=index_name, document=doc)
|
|
|
|
|
print(f"文档已保存,ID: {res['_id']}")
|
|
|
|
|
return res["_id"]
|
|
|
|
|
except Exception as e:
|
|
|
|
|
print(f"保存到ES失败: {str(e)}")
|
|
|
|
|
raise
|
|
|
|
|
|
|
|
|
|
# 使用示例
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
create_vector_index(dims=200) # 使用工具函数创建索引
|
|
|
|
|
save_to_es("如何更换支付宝绑定银行卡")
|