You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1 line
46 KiB

3 weeks ago
{"embedding_dim": 1024, "data": [{"__id__": "rel-8c1c7a535667da54717cfc684a29b3c3", "__created_at__": 1752209913, "src_id": "Triangle ABC", "tgt_id": "Triangle Inequality", "content": "Triangle ABC\tTriangle Inequality\ngeometric proof,inequality\nTriangle ABC is used to demonstrate the triangle inequality theorem, showing the relationship between its sides.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "rel-b46d74f0796c8b6fef0de58539f07c35", "__created_at__": 1752209913, "src_id": "Euclid's Fifth Postulate", "tgt_id": "Proposition 19", "content": "Euclid's Fifth Postulate\tProposition 19\nangle-side relationship,geometric principles\nEuclid's Fifth Postulate is used alongside Proposition 19 to establish the relationship between angles and sides in the proof.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "rel-2ef66df36fc7aa71e1374473e20fdd1f", "__created_at__": 1752209913, "src_id": "Proposition 19", "tgt_id": "Triangle Inequality", "content": "Proposition 19\tTriangle Inequality\ngeometric logic,proof technique\nProposition 19 is applied to prove the triangle inequality by comparing angles and corresponding sides.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "rel-e3c9f606eb2d48c5e37f2c2d8bff69ed", "__created_at__": 1752209913, "src_id": "三角不等式", "tgt_id": "三角形ABC", "content": "三角不等式\t三角形ABC\ngeometric proof,inequality demonstration\nThe proof uses triangle ABC to demonstrate the triangle inequality theorem through geometric construction.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "rel-de9c692983018a15521f9ccd2f7c6a7a", "__created_at__": 1752209913, "src_id": "命题19", "tgt_id": "欧几里得第五公理", "content": "命题19\t欧几里得第五公理\ngeometric principles,logical progression\nEuclid's Fifth Postulate is used to establish angle comparisons that lead to the application of Proposition 19 in the proof.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "rel-37e6f8ce2b52adfdbedbf5458829145f", "__created_at__": 1752209913, "src_id": "三角形ABC", "tgt_id": "点D", "content": "三角形ABC\t点D\nauxiliary point,geometric construction\nPoint D is constructed from triangle ABC by extending side AB to create additional geometric relationships.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "rel-2a9cc6a702126e537b2447867dae52f6", "__created_at__": 1752209913, "src_id": "命题19", "tgt_id": "等腰三角形BCD", "content": "命题19\t等腰三角形BCD\nangle properties,proof technique\nThe isosceles triangle BCD's angle properties enable the application of Proposition 19 regarding angle-side relationships.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}, {"__id__": "rel-039ba025f89bcd6d36103f7ef75d76ca", "__created_at__": 1752209913, "src_id": "三角不等式", "tgt_id": "几何原本", "content": "三角不等式\t几何原本\nhistorical reference,mathematical foundation\nThe triangle inequality proof references Euclid's Elements (几何原本) as the source of foundational geometric propositions.", "source_id": "chunk-a5e3dacee89618f913c4948b6ffe64ec", "file_path": "unknown_source"}], "matrix": "ZDFVPKco+zxTcES9806qvECiFjqWZ+o74mngOyCLpTwD32S8Dc0HPAw7K739aYq8nmUdPIKZPLxdKh68GWC1PE4lND2m7qC8nDTHO2JYgbznBee86kPaPD8gSry6Ppu7TGmNPOpDWjylbNS794ydPXF6mDzOjpW8oX9XPNH5RboXgFW83BEzPeUsE73vVJC89rnauvWsvTtA84y8SAfhPIfXr7vaVQw80Eq8PMkfzLwVBRU811HzvGDzYbtTU5e8XmuEOvYKUbydkto8DkhIu5p4oD0nWII5qrfkvIXKkjsmaBK9YgeLvL8UfL3QLY+8u3+BvLRxPrx/j5K5cmP8vIG53LzttRY8c+XIvJUJ17u9WFW80fnFvH5OLD3nKaA8lQlXvaedqrzQSjy9k00wPK6kYb2BaOY7XWT4u+bLDD1Uzte8zF2/OwEGkTw9E606nQeKvEkU/rucFxq9hroCPVgwhLybJ6o8kUATvfl8jTtLlko9dfLlO7evMbvapgK9yqGYvPtifrz9NcE8LxvgPEGShj34xnc6zz2fPMnO1bx2xSi7t68xvWbtez3bBBY99S6KPTPOArzW8189KGUfPPtVYTzyHVQ9ZKYEO+ZW3TwfuGK8K/QIO0+D