You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

319 lines
11 KiB

1 month ago
import os
import subprocess
import tempfile
import urllib.parse
import uuid
1 month ago
import logging
1 month ago
from contextlib import asynccontextmanager
from io import BytesIO
from logging.handlers import RotatingFileHandler
from typing import List
import jieba # 导入 jieba 分词库
import uvicorn
from fastapi import FastAPI, Request, HTTPException
from fastapi.staticfiles import StaticFiles
from gensim.models import KeyedVectors
from pydantic import BaseModel, Field, ValidationError
from starlette.responses import StreamingResponse
1 month ago
from Config.Config import ES_CONFIG, MS_MODEL_PATH, MS_MODEL_LIMIT
from ElasticSearch.Utils.ElasticsearchCollectionManager import ElasticsearchCollectionManager
from ElasticSearch.Utils.ElasticsearchConnectionPool import ElasticsearchConnectionPool
1 month ago
from Util.ALiYunUtil import ALiYunUtil
# 初始化日志
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
1 month ago
# 确保日志目录存在
os.makedirs('Logs', exist_ok=True)
1 month ago
handler = RotatingFileHandler('Logs/start.log', maxBytes=1024 * 1024, backupCount=5)
handler.setFormatter(logging.Formatter('%(asctime)s - %(levelname)s - %(message)s'))
logger.addHandler(handler)
# 1. 加载预训练的 Word2Vec 模型
model = KeyedVectors.load_word2vec_format(MS_MODEL_PATH, binary=False, limit=MS_MODEL_LIMIT)
logger.info(f"模型加载成功,词向量维度: {model.vector_size}")
# 将HTML文件转换为Word文件
def html_to_word_pandoc(html_file, output_file):
subprocess.run(['pandoc', html_file, '-o', output_file])
@asynccontextmanager
async def lifespan(app: FastAPI):
1 month ago
# 初始化Elasticsearch连接池
app.state.es_pool = ElasticsearchConnectionPool(
hosts=ES_CONFIG["hosts"],
basic_auth=ES_CONFIG["basic_auth"],
verify_certs=ES_CONFIG["verify_certs"],
max_connections=50
)
logger.info("Elasticsearch连接池初始化完成")
1 month ago
# 初始化集合管理器
1 month ago
app.state.collection_manager = ElasticsearchCollectionManager(ES_CONFIG["index_name"])
# 获取连接并加载索引
es_conn = app.state.es_pool.get_connection()
try:
app.state.collection_manager.load_collection(es_conn)
finally:
app.state.es_pool.release_connection(es_conn)
1 month ago
# 初始化阿里云大模型工具
app.state.aliyun_util = ALiYunUtil()
yield
1 month ago
# 关闭Elasticsearch连接池
app.state.es_pool.close()
1 month ago
app = FastAPI(lifespan=lifespan)
# 挂载静态文件目录
app.mount("/static", StaticFiles(directory="Static"), name="static")
# 将文本转换为嵌入向量
def text_to_embedding(text):
words = jieba.lcut(text) # 使用 jieba 分词
print(f"文本: {text}, 分词结果: {words}")
1 month ago
try:
embeddings = [model[word] for word in words if word in model]
logger.info(f"有效词向量数量: {len(embeddings)}")
if embeddings:
avg_embedding = sum(embeddings) / len(embeddings)
logger.info(f"生成的平均向量: {avg_embedding[:5]}...") # 打印前 5 维
return avg_embedding
else:
logger.warning("未找到有效词,返回零向量")
return [0.0] * model.vector_size
except Exception as e:
logger.error(f"向量转换失败: {str(e)}")
1 month ago
return [0.0] * model.vector_size
1 month ago
async def generate_stream(client, es_pool, collection_manager, query, documents):
1 month ago
# 从连接池获取连接
1 month ago
es_conn = es_pool.get_connection()
1 month ago
try:
# 1. 将查询文本转换为向量
current_embedding = text_to_embedding(query)
1 month ago
# 2. 构建搜索参数
1 month ago
if documents:
1 month ago
expr = {
"bool": {
"should": [
{"terms": {"tags.tags": [doc]}} for doc in documents
],
"minimum_should_match": 1
}
}
1 month ago
else:
1 month ago
expr = None
# 3. 执行混合搜索
1 month ago
if not isinstance(current_embedding, list):
logger.error(f"current_embedding类型错误: {type(current_embedding)}")
current_embedding = [0.0] * model.vector_size
# 向量搜索
vector_results = es_conn.search(
index=ES_CONFIG['index_name'],
body={
"query": {
"match": {
"content": {
"query": query,
"analyzer": "ik_smart" # 指定分词器
}
}
},
"size": 5
}
1 month ago
)
1 month ago
# 文本精确搜索
text_results = es_conn.search(
index="raw_texts",
body={
"query": {
"match": {
"text.keyword": query
}
},
"size": 5
}
)
# 合并结果
results = []
for hit in vector_results['hits']['hits']:
results.append({
"_source": hit['_source'],
"_score": hit['_score'],
"_id": hit['_id']
})
for hit in text_results['hits']['hits']:
results.append({
"_source": hit['_source'],
"_score": hit['_score'],
"_id": hit['_id']
})
1 month ago
logger.info(f"搜索返回结果数量: {len(results) if results else 0}")
1 month ago
# 3. 处理搜索结果
logger.info("最相关的知识库内容:")
context = ""
if results:
1 month ago
for hit in results:
try:
source = hit["_source"]
score = hit["_score"]
if score > 0.5: # 设置相似度阈值
logger.info(f"ID: {hit['_id']}")
logger.info(f"标签: {source['tags']}")
logger.info(f"用户问题: {source['user_input']}")
logger.info(f"时间: {source['timestamp']}")
logger.info(f"分数: {score}")
logger.info("-" * 40)
full_content = source['tags'].get('full_content', source['user_input'])
1 month ago
if isinstance(full_content, str):
context = context + full_content
else:
logger.warning(f"Unexpected content type: {type(full_content)}")
1 month ago
else:
logger.warning(f"分数太低,忽略此结果: {hit['_id']}")
continue
except Exception as e:
logger.error(f"查询失败: {e}")
1 month ago
else:
logger.warning("未找到相关历史对话,请检查查询参数或数据。")
prompt = f"""
信息检索与回答助手
根据以下关于'{query}'的相关信息
基本信息
- 语言: 中文
- 描述: 根据提供的材料检索信息并回答问题
- 特点: 快速准确提取关键信息清晰简洁地回答
相关信息
{context}
回答要求
1. 依托给定的资料快速准确地回答问题可以添加一些额外的信息但请勿重复内容
2. 如果未提供相关信息请不要回答
3. 如果发现相关信息与原来的问题契合度低也不要回答
4. 使用HTML格式返回包含适当的段落列表和标题标签
5. 确保内容结构清晰便于前端展示
"""
# 调用阿里云大模型
if len(context) > 0:
html_content = client.chat(prompt)
yield {"data": html_content}
else:
yield {"data": "没有在知识库中找到相关的信息,无法回答此问题。"}
except Exception as e:
1 month ago
logger.error(f"生成报告时出错: {str(e)}")
1 month ago
yield {"data": f"生成报告时出错: {str(e)}"}
finally:
# 释放连接
1 month ago
es_pool.release_connection(es_conn)
logger.info("Elasticsearch连接已释放")
1 month ago
class QueryRequest(BaseModel):
query: str = Field(..., description="用户查询的问题")
documents: List[str] = Field(..., description="用户上传的文档")
class SaveWordRequest(BaseModel):
html: str = Field(..., description="要保存为Word的HTML内容")
@app.post("/api/save-word")
async def save_to_word(request: Request):
temp_html = None
output_file = None
try:
# Parse request data
try:
data = await request.json()
html_content = data.get('html_content', '')
if not html_content:
raise ValueError("Empty HTML content")
except Exception as e:
logger.error(f"Request parsing failed: {str(e)}")
raise HTTPException(status_code=400, detail=f"Invalid request: {str(e)}")
# 创建临时HTML文件
temp_html = os.path.join(tempfile.gettempdir(), uuid.uuid4().hex + ".html")
with open(temp_html, "w", encoding="utf-8") as f:
f.write(html_content)
# 使用pandoc转换
1 month ago
output_file = os.path.join(tempfile.gettempdir(), "理想大模型问答.docx")
1 month ago
subprocess.run(['pandoc', temp_html, '-o', output_file], check=True)
# 读取生成的Word文件
with open(output_file, "rb") as f:
stream = BytesIO(f.read())
# 返回响应
1 month ago
encoded_filename = urllib.parse.quote("理想大模型问答.docx")
1 month ago
return StreamingResponse(
stream,
media_type="application/vnd.openxmlformats-officedocument.wordprocessingml.document",
headers={"Content-Disposition": f"attachment; filename*=UTF-8''{encoded_filename}"})
except HTTPException:
raise
except Exception as e:
logger.error(f"Unexpected error: {str(e)}")
raise HTTPException(status_code=500, detail="Internal server error")
finally:
# 清理临时文件
try:
if temp_html and os.path.exists(temp_html):
os.remove(temp_html)
if output_file and os.path.exists(output_file):
os.remove(output_file)
except Exception as e:
logger.warning(f"Failed to clean up temp files: {str(e)}")
@app.post("/api/rag")
async def rag_stream(request: Request):
try:
data = await request.json()
query_request = QueryRequest(**data)
except ValidationError as e:
logger.error(f"请求体验证失败: {e.errors()}")
raise HTTPException(status_code=422, detail=e.errors())
except Exception as e:
logger.error(f"请求解析失败: {str(e)}")
raise HTTPException(status_code=400, detail="无效的请求格式")
"""RAG+ALiYun接口"""
async for chunk in generate_stream(
request.app.state.aliyun_util,
1 month ago
request.app.state.es_pool,
1 month ago
request.app.state.collection_manager,
query_request.query,
query_request.documents
):
return chunk
if __name__ == "__main__":
1 month ago
logger.info("启动Elasticsearch混合搜索服务")
1 month ago
uvicorn.run(app, host="0.0.0.0", port=8000)