You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

112 lines
4.0 KiB

2 weeks ago
import asyncio
from lightrag.kg.shared_storage import initialize_pipeline_status
from raganything import RAGAnything
from lightrag import LightRAG
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
from lightrag.utils import EmbeddingFunc
import os
2 weeks ago
from Config.Config import *
2 weeks ago
2 weeks ago
async def load_existing_lightrag():
2 weeks ago
# 首先,创建或加载已存在的 LightRAG 实例
lightrag_working_dir = "./rag_storage"
# 检查是否存在之前的 LightRAG 实例
if os.path.exists(lightrag_working_dir) and os.listdir(lightrag_working_dir):
print("✅ 发现已存在的 LightRAG 实例,正在加载...")
else:
print("❌ 未找到已存在的 LightRAG 实例,将创建新实例")
# 使用您的配置创建/加载 LightRAG 实例
lightrag_instance = LightRAG(
working_dir=lightrag_working_dir,
llm_model_func=lambda prompt, system_prompt=None, history_messages=[], **kwargs: openai_complete_if_cache(
"deepseek-chat",
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
2 weeks ago
api_key=LLM_API_KEY,
base_url=LLM_BASE_URL,
2 weeks ago
**kwargs,
),
embedding_func=EmbeddingFunc(
embedding_dim=1024,
max_token_size=8192,
func=lambda texts: openai_embed(
texts,
2 weeks ago
model=EMBED_MODEL_NAME,
api_key=EMBED_API_KEY,
base_url=EMBED_BASE_URL,
2 weeks ago
),
)
)
# 初始化存储(如果有现有数据,这将加载它们)
await lightrag_instance.initialize_storages()
await initialize_pipeline_status()
# 定义视觉模型函数用于图像处理
def vision_model_func(
2 weeks ago
prompt, system_prompt=None, history_messages=None, image_data=None, **kwargs
2 weeks ago
):
2 weeks ago
if history_messages is None:
history_messages = []
2 weeks ago
if image_data:
return openai_complete_if_cache(
2 weeks ago
VISION_MODEL_NAME,
2 weeks ago
"",
system_prompt=None,
history_messages=[],
messages=[
{"role": "system", "content": system_prompt}
if system_prompt
else None,
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{image_data}"
},
},
],
}
if image_data
else {"role": "user", "content": prompt},
],
2 weeks ago
api_key=VISION_API_KEY,
base_url=VISION_BASE_URL,
2 weeks ago
**kwargs,
)
else:
return lightrag_instance.llm_model_func(prompt, system_prompt, history_messages, **kwargs)
# 现在使用已存在的 LightRAG 实例初始化 RAGAnything
rag = RAGAnything(
lightrag=lightrag_instance, # 传入已存在的 LightRAG 实例
vision_model_func=vision_model_func,
# 注意working_dir、llm_model_func、embedding_func 等都从 lightrag_instance 继承
)
# 查询已存在的知识库
result = await rag.aquery(
2 weeks ago
# "黄琬乔的准考证信息告诉我一下?",
2 weeks ago
"平台安全的保证方法有哪些?",
2 weeks ago
mode="hybrid"
)
print("查询结果:", result)
# 向已存在的 LightRAG 实例添加新的多模态文档
# await rag.process_document_complete(
# file_path="path/to/new/multimodal_document.pdf",
# output_dir="./output"
# )
2 weeks ago
2 weeks ago
if __name__ == "__main__":
2 weeks ago
asyncio.run(load_existing_lightrag())