You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

238 lines
9.0 KiB

4 weeks ago
import logging
import os
from logging.handlers import RotatingFileHandler
4 weeks ago
import jieba
4 weeks ago
from gensim.models import KeyedVectors
4 weeks ago
3 weeks ago
from Config.Config import MODEL_LIMIT, MODEL_PATH, ES_CONFIG
4 weeks ago
from ElasticSearch.Utils.ElasticsearchConnectionPool import ElasticsearchConnectionPool
4 weeks ago
# 初始化日志
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
# 确保日志目录存在
os.makedirs('Logs', exist_ok=True)
handler = RotatingFileHandler('Logs/start.log', maxBytes=1024 * 1024, backupCount=5)
handler.setFormatter(logging.Formatter('%(asctime)s - %(levelname)s - %(message)s'))
logger.addHandler(handler)
4 weeks ago
class EsSearchUtil:
def __init__(self, es_config):
"""
4 weeks ago
初始化Elasticsearch搜索工具
:param es_config: Elasticsearch配置字典包含hosts, username, password, index_name等
"""
4 weeks ago
self.es_config = es_config
4 weeks ago
4 weeks ago
# 初始化连接池
self.es_pool = ElasticsearchConnectionPool(
4 weeks ago
hosts=es_config['hosts'],
4 weeks ago
basic_auth=es_config['basic_auth'],
4 weeks ago
verify_certs=es_config.get('verify_certs', False),
max_connections=50
)
4 weeks ago
4 weeks ago
# 保留直接连接用于兼容
from elasticsearch import Elasticsearch
self.es = Elasticsearch(
hosts=es_config['hosts'],
basic_auth=es_config['basic_auth'],
verify_certs=es_config.get('verify_certs', False)
4 weeks ago
)
4 weeks ago
4 weeks ago
# 确保es_conn属性存在以兼容旧代码
self.es_conn = self.es
4 weeks ago
4 weeks ago
# 确保es_conn属性存在以兼容旧代码
self.es_conn = self.es
4 weeks ago
# 加载预训练模型
4 weeks ago
self.model = KeyedVectors.load_word2vec_format(MODEL_PATH, binary=False, limit=MODEL_LIMIT)
4 weeks ago
logger.info(f"模型加载成功,词向量维度: {self.model.vector_size}")
# 初始化Elasticsearch连接
self.es = Elasticsearch(
hosts=es_config['hosts'],
basic_auth=es_config['basic_auth'],
verify_certs=False
)
self.index_name = es_config['index_name']
def text_to_embedding(self, text):
# 使用已加载的模型
4 weeks ago
# 对文本分词并计算平均向量
words = jieba.lcut(text)
4 weeks ago
vectors = [self.model[word] for word in words if word in self.model]
4 weeks ago
if not vectors:
4 weeks ago
return [0.0] * self.model.vector_size
4 weeks ago
# 计算平均向量
avg_vector = [sum(dim)/len(vectors) for dim in zip(*vectors)]
return avg_vector
4 weeks ago
def vector_search(self, query, size=10):
query_embedding = self.text_to_embedding(query)
script_query = {
"script_score": {
"query": {"match_all": {}},
"script": {
"source": "double score = cosineSimilarity(params.query_vector, 'embedding'); return score >= 0 ? score : 0",
"params": {"query_vector": query_embedding}
}
}
}
return self.es_conn.search(
index=self.es_config['index_name'],
query=script_query,
size=size
)
def text_search(self, query, size=10):
return self.es_conn.search(
index=self.es_config['index_name'],
query={"match": {"user_input": query}},
size=size
)
def hybrid_search(self, query, size=10):
"""
执行混合搜索向量搜索+文本搜索
:param query: 搜索查询文本
:param size: 返回结果数量
:return: 包含两种搜索结果的字典
"""
vector_results = self.vector_search(query, size)
text_results = self.text_search(query, size)
return {
'vector_results': vector_results,
'text_results': text_results
}
def search(self, query, search_type='hybrid', size=10):
"""
统一搜索接口
:param query: 搜索查询文本
:param search_type: 搜索类型'vector', 'text' 'hybrid'
:param size: 返回结果数量
:return: 搜索结果
"""
if search_type == 'vector':
return self.vector_search(query, size)
elif search_type == 'text':
return self.text_search(query, size)
else:
3 weeks ago
return self.hybrid_search(query, size)
def queryByEs(query, query_tags, logger):
# 获取EsSearchUtil实例
es_search_util = EsSearchUtil(ES_CONFIG)
# 执行混合搜索
es_conn = es_search_util.es_pool.get_connection()
try:
# 向量搜索
logger.info(f"\n=== 开始执行查询 ===")
logger.info(f"原始查询文本: {query}")
logger.info(f"查询标签: {query_tags}")
logger.info("\n=== 向量搜索阶段 ===")
logger.info("1. 文本分词和向量化处理中...")
query_embedding = es_search_util.text_to_embedding(query)
logger.info(f"2. 生成的查询向量维度: {len(query_embedding)}")
logger.info(f"3. 前3维向量值: {query_embedding[:3]}")
logger.info("4. 正在执行Elasticsearch向量搜索...")
vector_results = es_conn.search(
index=ES_CONFIG['index_name'],
body={
"query": {
"script_score": {
"query": {
"bool": {
"should": [
{
"terms": {
"tags.tags": query_tags
}
}
],
"minimum_should_match": 1
}
},
"script": {
"source": "double score = cosineSimilarity(params.query_vector, 'embedding'); return score >= 0 ? score : 0",
"params": {"query_vector": query_embedding}
}
}
},
"size": 3
}
)
3 weeks ago
# 处理一下,判断是否到达阀值
filtered_vector_hits = []
vector_int = 0
for hit in vector_results['hits']['hits']:
3 weeks ago
if hit['_score'] > 0.8: # 阀值0.8
3 weeks ago
# 新增语义相关性检查
if all(word in hit['_source']['user_input'] for word in jieba.lcut(query)):
logger.info(f" {vector_int + 1}. 文档ID: {hit['_id']}, 相似度分数: {hit['_score']:.2f}")
logger.info(f" 内容: {hit['_source']['user_input']}")
filtered_vector_hits.append(hit)
vector_int += 1
3 weeks ago
# 更新vector_results只包含通过过滤的文档
vector_results['hits']['hits'] = filtered_vector_hits
logger.info(f"5. 向量搜索结果数量(过滤后): {vector_int}")
3 weeks ago
# 文本精确搜索
logger.info("\n=== 文本精确搜索阶段 ===")
logger.info("1. 正在执行Elasticsearch文本精确搜索...")
text_results = es_conn.search(
index=ES_CONFIG['index_name'],
body={
"query": {
"bool": {
"must": [
{
"match": {
"user_input": query
}
},
{
"terms": {
"tags.tags": query_tags
}
}
]
}
},
"size": 3
}
)
logger.info(f"2. 文本搜索结果数量: {len(text_results['hits']['hits'])}")
3 weeks ago
# 合并vector和text结果
all_sources = [hit['_source'] for hit in vector_results['hits']['hits']] + \
[hit['_source'] for hit in text_results['hits']['hits']]
# 去重处理
unique_sources = []
seen_user_inputs = set()
for source in all_sources:
if source['user_input'] not in seen_user_inputs:
seen_user_inputs.add(source['user_input'])
unique_sources.append(source)
logger.info(f"合并后去重结果数量: {len(unique_sources)}")
3 weeks ago
search_results = {
3 weeks ago
"text_results": unique_sources
3 weeks ago
}
return search_results
finally:
es_search_util.es_pool.release_connection(es_conn)