You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

67 lines
1.8 KiB

1 month ago
from datetime import datetime
1 month ago
from elasticsearch import Elasticsearch
from Config.Config import ES_CONFIG
from T2_Txt2Vec import text_to_embedding
1 month ago
from Util.EsMappingUtil import create_vector_index
1 month ago
# 初始化ES连接
es = Elasticsearch(
hosts=ES_CONFIG["hosts"],
basic_auth=ES_CONFIG["basic_auth"],
verify_certs=ES_CONFIG["verify_certs"],
ssl_show_warn=ES_CONFIG["ssl_show_warn"]
)
1 month ago
def save_vector(text, index_name="knowledge_base"):
"""将文本向量化后保存到ES"""
try:
# 向量化文本
vector = text_to_embedding(text)
# 准备文档
doc = {
"text": text,
"vector": vector,
"timestamp": datetime.now()
}
# 保存到ES
res = es.index(index=index_name, document=doc)
print(f"向量化文档已保存ID: {res['_id']}")
return res['_id']
except Exception as e:
print(f"保存失败: {str(e)}")
raise
def save_raw_text(text, index_name="raw_texts"):
"""保存原始文本到ES"""
try:
# 准备文档
doc = {
"text": text,
"timestamp": datetime.now()
}
# 保存到ES
res = es.index(index=index_name, document=doc)
print(f"原始文本已保存ID: {res['_id']}")
return res['_id']
except Exception as e:
print(f"保存失败: {str(e)}")
raise
1 month ago
# 使用示例
if __name__ == "__main__":
1 month ago
# 创建向量索引
create_vector_index(dims=200)
# 示例文本
sample_text = "如何更换支付宝绑定银行卡"
# 保存向量化文档
save_vector(sample_text)
# 保存原始文本
save_raw_text(sample_text)