You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

128 lines
4.3 KiB

4 weeks ago
import logging
import os
from logging.handlers import RotatingFileHandler
4 weeks ago
import jieba
4 weeks ago
from elasticsearch import Elasticsearch
4 weeks ago
from ElasticSearch.Utils.ElasticsearchConnectionPool import ElasticsearchConnectionPool
4 weeks ago
# 初始化日志
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
# 确保日志目录存在
os.makedirs('Logs', exist_ok=True)
handler = RotatingFileHandler('Logs/start.log', maxBytes=1024 * 1024, backupCount=5)
handler.setFormatter(logging.Formatter('%(asctime)s - %(levelname)s - %(message)s'))
logger.addHandler(handler)
4 weeks ago
class EsSearchUtil:
4 weeks ago
4 weeks ago
def __init__(self, es_config):
"""
初始化Elasticsearch搜索工具
:param es_config: Elasticsearch配置字典包含hosts, username, password, index_name等
"""
self.es_config = es_config
4 weeks ago
# 初始化连接池
self.es_pool = ElasticsearchConnectionPool(
4 weeks ago
hosts=es_config['hosts'],
4 weeks ago
basic_auth=es_config['basic_auth'],
4 weeks ago
verify_certs=es_config.get('verify_certs', False),
max_connections=50
)
# 保留直接连接用于兼容
from elasticsearch import Elasticsearch
self.es = Elasticsearch(
hosts=es_config['hosts'],
basic_auth=es_config['basic_auth'],
verify_certs=es_config.get('verify_certs', False)
4 weeks ago
)
4 weeks ago
# 确保es_conn属性存在以兼容旧代码
self.es_conn = self.es
4 weeks ago
4 weeks ago
def __init__(self, es_config):
from gensim.models import KeyedVectors
from Config.Config import MS_MODEL_PATH, MS_MODEL_LIMIT
4 weeks ago
# 加载预训练模型
4 weeks ago
self.model = KeyedVectors.load_word2vec_format(MS_MODEL_PATH, binary=False, limit=MS_MODEL_LIMIT)
logger.info(f"模型加载成功,词向量维度: {self.model.vector_size}")
# 初始化Elasticsearch连接
self.es = Elasticsearch(
hosts=es_config['hosts'],
basic_auth=es_config['basic_auth'],
verify_certs=False
)
self.index_name = es_config['index_name']
def text_to_embedding(self, text):
# 使用已加载的模型
4 weeks ago
# 对文本分词并计算平均向量
words = jieba.lcut(text)
4 weeks ago
vectors = [self.model[word] for word in words if word in self.model]
4 weeks ago
if not vectors:
4 weeks ago
return [0.0] * self.model.vector_size
4 weeks ago
# 计算平均向量
avg_vector = [sum(dim)/len(vectors) for dim in zip(*vectors)]
return avg_vector
4 weeks ago
def vector_search(self, query, size=10):
query_embedding = self.text_to_embedding(query)
script_query = {
"script_score": {
"query": {"match_all": {}},
"script": {
"source": "double score = cosineSimilarity(params.query_vector, 'embedding'); return score >= 0 ? score : 0",
"params": {"query_vector": query_embedding}
}
}
}
return self.es_conn.search(
index=self.es_config['index_name'],
query=script_query,
size=size
)
def text_search(self, query, size=10):
return self.es_conn.search(
index=self.es_config['index_name'],
query={"match": {"user_input": query}},
size=size
)
def hybrid_search(self, query, size=10):
"""
执行混合搜索向量搜索+文本搜索
:param query: 搜索查询文本
:param size: 返回结果数量
:return: 包含两种搜索结果的字典
"""
vector_results = self.vector_search(query, size)
text_results = self.text_search(query, size)
return {
'vector_results': vector_results,
'text_results': text_results
}
def search(self, query, search_type='hybrid', size=10):
"""
统一搜索接口
:param query: 搜索查询文本
:param search_type: 搜索类型'vector', 'text' 'hybrid'
:param size: 返回结果数量
:return: 搜索结果
"""
if search_type == 'vector':
return self.vector_search(query, size)
elif search_type == 'text':
return self.text_search(query, size)
else:
return self.hybrid_search(query, size)