2025-08-22 08:32:39 +08:00
|
|
|
|
import logging
|
2025-08-22 08:35:57 +08:00
|
|
|
|
import os
|
|
|
|
|
import tempfile
|
|
|
|
|
from datetime import datetime
|
2025-08-22 08:32:39 +08:00
|
|
|
|
|
2025-08-22 08:35:57 +08:00
|
|
|
|
from fastapi import APIRouter, Request, File, UploadFile
|
|
|
|
|
from fastapi.responses import JSONResponse
|
2025-08-22 08:32:39 +08:00
|
|
|
|
|
|
|
|
|
# 创建路由路由器
|
|
|
|
|
router = APIRouter(prefix="/api", tags=["学伴"])
|
|
|
|
|
|
|
|
|
|
# 配置日志
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
2025-08-22 08:35:57 +08:00
|
|
|
|
|
|
|
|
|
@router.post("/xueban/upload-audio")
|
|
|
|
|
async def upload_audio(file: UploadFile = File(...)):
|
|
|
|
|
"""
|
|
|
|
|
上传音频文件并进行ASR处理
|
|
|
|
|
- 参数: file - 音频文件
|
|
|
|
|
- 返回: JSON包含识别结果
|
|
|
|
|
"""
|
|
|
|
|
try:
|
|
|
|
|
# 记录日志
|
|
|
|
|
logger.info(f"接收到音频文件: {file.filename}")
|
|
|
|
|
|
|
|
|
|
# 保存临时文件
|
|
|
|
|
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
|
|
|
|
|
file_ext = os.path.splitext(file.filename)[1]
|
|
|
|
|
temp_file_name = f"temp_audio_{timestamp}{file_ext}"
|
|
|
|
|
temp_file_path = os.path.join(tempfile.gettempdir(), temp_file_name)
|
|
|
|
|
|
|
|
|
|
with open(temp_file_path, "wb") as f:
|
|
|
|
|
content = await file.read()
|
|
|
|
|
f.write(content)
|
|
|
|
|
|
|
|
|
|
logger.info(f"音频文件已保存至临时目录: {temp_file_path}")
|
|
|
|
|
|
|
|
|
|
# 这里应该调用ASR服务进行处理
|
|
|
|
|
# 示例:asr_result = await process_asr(temp_file_path)
|
|
|
|
|
# 为了演示,这里返回模拟结果
|
|
|
|
|
asr_result = {
|
|
|
|
|
"text": "这是一段测试音频的识别结果",
|
|
|
|
|
"confidence": 0.95,
|
|
|
|
|
"audio_duration": len(content) / 1024 / 16 # 估算音频时长
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
# 删除临时文件
|
|
|
|
|
os.remove(temp_file_path)
|
|
|
|
|
logger.info(f"临时文件已删除: {temp_file_path}")
|
|
|
|
|
|
|
|
|
|
# 返回识别结果
|
|
|
|
|
return JSONResponse(content={
|
|
|
|
|
"success": True,
|
|
|
|
|
"message": "音频识别成功",
|
|
|
|
|
"data": asr_result
|
|
|
|
|
})
|
|
|
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
|
logger.error(f"音频处理失败: {str(e)}")
|
|
|
|
|
return JSONResponse(content={
|
|
|
|
|
"success": False,
|
|
|
|
|
"message": f"音频处理失败: {str(e)}"
|
|
|
|
|
}, status_code=500)
|
|
|
|
|
|
|
|
|
|
# 实际应用中,您需要实现ASR处理函数
|
|
|
|
|
async def process_asr(audio_path: str) -> dict:
|
|
|
|
|
"""
|
|
|
|
|
调用ASR服务处理音频文件
|
|
|
|
|
:param audio_path: 音频文件路径
|
|
|
|
|
:return: 识别结果字典
|
|
|
|
|
"""
|
|
|
|
|
# 这里应该集成实际的ASR服务
|
|
|
|
|
# 例如百度AI、阿里云、讯飞等ASR服务
|
|
|
|
|
# 或者本地的ASR模型
|
2025-08-22 08:32:39 +08:00
|
|
|
|
pass
|