Files
dsProject/dsLightRag/Util/ShiTiRecognizer.py

194 lines
7.2 KiB
Python
Raw Normal View History

2025-09-01 07:40:41 +08:00
import json
import logging
from typing import Dict, Any
from alibabacloud_credentials.client import Client as CredentialClient
from alibabacloud_credentials.models import Config as CredentialConfig
from alibabacloud_ocr_api20210707 import models as OcrModels
from alibabacloud_ocr_api20210707.client import Client as OcrClient
from alibabacloud_tea_openapi import models as OpenApiModels
from alibabacloud_tea_util import models as UtilModels
from alibabacloud_tea_util.client import Client as UtilClient
from Config.Config import ALY_AK, ALY_SK
# 配置日志
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
class ShiTiRecognizer:
"""阿里云OCR试题识别服务封装类"""
# 默认配置
DEFAULT_ENDPOINT = 'ocr-api.cn-hangzhou.aliyuncs.com'
def __init__(self, access_key_id: str = None, access_key_secret: str = None, endpoint: str = None):
"""
初始化试题识别器
Args:
access_key_id: 阿里云访问密钥ID
access_key_secret: 阿里云访问密钥Secret
endpoint: OCR服务端点
"""
self.access_key_id = access_key_id or ALY_AK
self.access_key_secret = access_key_secret or ALY_SK
self.endpoint = endpoint or self.DEFAULT_ENDPOINT
self._client = None
@property
def client(self) -> OcrClient:
"""懒加载方式创建OCR客户端"""
if self._client is None:
self._client = self._create_client()
return self._client
def _create_client(self) -> OcrClient:
"""创建OCR客户端"""
try:
credential_config = CredentialConfig(
type='access_key',
access_key_id=self.access_key_id,
access_key_secret=self.access_key_secret
)
credential = CredentialClient(config=credential_config)
config = OpenApiModels.Config(
credential=credential,
endpoint=self.endpoint
)
return OcrClient(config)
except Exception as e:
logger.error(f"创建OCR客户端失败: {str(e)}")
raise
def recognize_question(self, image_url: str) -> Dict[str, Any]:
"""
识别图片中的试题内容
Args:
image_url: 图片URL
Returns:
识别结果字典
"""
if not image_url:
raise ValueError("图片URL不能为空")
logger.info(f"开始识别试题图片URL: {image_url}")
request = OcrModels.RecognizeEduQuestionOcrRequest()
request.url = image_url
runtime = UtilModels.RuntimeOptions()
try:
response = self.client.recognize_edu_question_ocr_with_options(request, runtime)
result = self._parse_response(response)
logger.info("试题识别成功")
2025-09-01 09:48:42 +08:00
print( result)
2025-09-01 07:40:41 +08:00
return result
except Exception as error:
logger.error(f"试题识别失败: {str(error)}")
self._handle_error(error)
return {"error": str(error)}
def _parse_response(self, response) -> Dict[str, Any]:
"""解析API响应"""
if not response or not response.body:
return {"error": "API返回空响应"}
try:
# 获取响应体对象
body = response.body
# 检查响应体是否有to_map方法这是阿里云SDK中常用的对象转换方法
if hasattr(body, 'to_map'):
body_map = body.to_map()
# 检查Data字段是否为字符串如果是则尝试解析为JSON
if "Data" in body_map and isinstance(body_map["Data"], str):
try:
body_map["Data"] = json.loads(body_map["Data"])
except json.JSONDecodeError:
logger.warning("Data字段不是有效的JSON字符串")
return body_map
# 如果没有to_map方法尝试直接获取属性
result = {
"request_id": getattr(body, 'request_id', ''),
"code": getattr(body, 'code', ''),
"message": getattr(body, 'message', ''),
"Data": None
}
# 处理Data字段
data = getattr(body, 'data', None)
if data:
# 如果Data对象有to_map方法使用它
if hasattr(data, 'to_map'):
result["Data"] = data.to_map()
else:
# 否则手动构建Data字典
result["Data"] = {
"content": getattr(data, 'content', ''),
"score": getattr(data, 'score', 0),
"question_info": getattr(data, 'question_info', ''),
"angle": getattr(data, 'angle', 0)
}
return result
except Exception as e:
logger.warning(f"响应解析失败,返回原始数据: {str(e)}")
return {"raw_data": str(response.body)}
def _handle_error(self, error: Exception) -> None:
"""处理API错误"""
error_message = getattr(error, 'message', str(error))
logger.error(f"错误信息: {error_message}")
if hasattr(error, 'data') and error.data:
recommend = error.data.get("Recommend")
if recommend:
logger.info(f"诊断建议: {recommend}")
# 在实际项目中,这里可以添加更复杂的错误处理逻辑
UtilClient.assert_as_string(error_message)
if __name__ == '__main__':
"""主函数,演示试题识别功能"""
try:
recognizer = ShiTiRecognizer()
# 传入固定的图片URL
2025-09-01 11:16:24 +08:00
#image_url = "https://dsideal.obs.cn-north-1.myhuaweicloud.com/HuangHai/Backup/ShiTi.jpg"
image_url="https://dsideal.obs.cn-north-1.myhuaweicloud.com/HuangHai/Backup/ShouXieTi.jpg"
2025-09-01 07:40:41 +08:00
result = recognizer.recognize_question(image_url)
print("识别结果:")
print(json.dumps(result, indent=2, ensure_ascii=False))
# 如果需要,可以在这里添加结果处理逻辑
if "Data" in result and result["Data"]:
# 尝试多种方式获取content字段
content = ""
if isinstance(result["Data"], dict):
content = result["Data"].get("content", "")
elif hasattr(result["Data"], "get"):
content = result["Data"].get("content", "")
if content:
print(f"\n识别的试题内容: {content}")
else:
print("\n未识别到试题内容")
else:
print("\n响应中没有有效的试题数据")
except Exception as e:
logger.error(f"程序执行失败: {str(e)}")
print(f"错误: {str(e)}")