You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

171 lines
6.2 KiB

3 weeks ago
import json
3 weeks ago
import subprocess
import tempfile
4 weeks ago
import urllib.parse
3 weeks ago
import uuid
import warnings
from io import BytesIO
4 weeks ago
3 weeks ago
import fastapi
import uvicorn
from fastapi import FastAPI, HTTPException
3 weeks ago
from openai import AsyncOpenAI
from sse_starlette import EventSourceResponse
3 weeks ago
from starlette.responses import StreamingResponse
3 weeks ago
from starlette.staticfiles import StaticFiles
3 weeks ago
from Config import Config
3 weeks ago
from Util.EsSearchUtil import *
3 weeks ago
4 weeks ago
# 初始化日志
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
4 weeks ago
# 配置日志处理器
log_file = os.path.join(os.path.dirname(__file__), 'Logs', 'app.log')
os.makedirs(os.path.dirname(log_file), exist_ok=True)
# 文件处理器
file_handler = RotatingFileHandler(
3 weeks ago
log_file, maxBytes=1024 * 1024, backupCount=5, encoding='utf-8')
4 weeks ago
file_handler.setFormatter(logging.Formatter(
'%(asctime)s - %(name)s - %(levelname)s - %(message)s'))
# 控制台处理器
console_handler = logging.StreamHandler()
console_handler.setFormatter(logging.Formatter(
'%(asctime)s - %(name)s - %(levelname)s - %(message)s'))
logger.addHandler(file_handler)
logger.addHandler(console_handler)
3 weeks ago
# 初始化异步 OpenAI 客户端
client = AsyncOpenAI(
api_key=Config.MODEL_API_KEY,
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
)
4 weeks ago
async def lifespan(app: FastAPI):
4 weeks ago
# 抑制HTTPS相关警告
warnings.filterwarnings('ignore', message='Connecting to .* using TLS with verify_certs=False is insecure')
warnings.filterwarnings('ignore', message='Unverified HTTPS request is being made to host')
4 weeks ago
yield
4 weeks ago
4 weeks ago
app = FastAPI(lifespan=lifespan)
# 挂载静态文件目录
app.mount("/static", StaticFiles(directory="Static"), name="static")
@app.post("/api/save-word")
3 weeks ago
async def save_to_word(request: fastapi.Request):
4 weeks ago
output_file = None
try:
# Parse request data
try:
data = await request.json()
3 weeks ago
markdown_content = data.get('markdown_content', '')
if not markdown_content:
raise ValueError("Empty MarkDown content")
4 weeks ago
except Exception as e:
logger.error(f"Request parsing failed: {str(e)}")
raise HTTPException(status_code=400, detail=f"Invalid request: {str(e)}")
3 weeks ago
# 创建临时Markdown文件
temp_md = os.path.join(tempfile.gettempdir(), uuid.uuid4().hex + ".md")
with open(temp_md, "w", encoding="utf-8") as f:
3 weeks ago
f.write(markdown_content)
4 weeks ago
# 使用pandoc转换
4 weeks ago
output_file = os.path.join(tempfile.gettempdir(), "【理想大模型】问答.docx")
3 weeks ago
subprocess.run(['pandoc', temp_md, '-o', output_file, '--resource-path=static'], check=True)
4 weeks ago
# 读取生成的Word文件
with open(output_file, "rb") as f:
stream = BytesIO(f.read())
# 返回响应
4 weeks ago
encoded_filename = urllib.parse.quote("【理想大模型】问答.docx")
4 weeks ago
return StreamingResponse(
stream,
media_type="application/vnd.openxmlformats-officedocument.wordprocessingml.document",
headers={"Content-Disposition": f"attachment; filename*=UTF-8''{encoded_filename}"})
except HTTPException:
raise
except Exception as e:
logger.error(f"Unexpected error: {str(e)}")
raise HTTPException(status_code=500, detail="Internal server error")
finally:
# 清理临时文件
try:
3 weeks ago
if temp_md and os.path.exists(temp_md):
os.remove(temp_md)
4 weeks ago
if output_file and os.path.exists(output_file):
os.remove(output_file)
except Exception as e:
logger.warning(f"Failed to clean up temp files: {str(e)}")
3 weeks ago
@app.post("/api/rag", response_model=None)
async def rag(request: fastapi.Request):
3 weeks ago
data = await request.json()
query = data.get('query', '')
query_tags = data.get('tags', [])
3 weeks ago
# 调用es进行混合搜索
3 weeks ago
search_results = EsSearchUtil.queryByEs(query, query_tags, logger)
3 weeks ago
# 构建提示词
context = "\n".join([
f"结果{i + 1}: {res['tags']['full_content']}"
3 weeks ago
for i, res in enumerate(search_results['text_results'])
3 weeks ago
])
# 添加图片识别提示
prompt = f"""
信息检索与回答助手
根据以下关于'{query}'的相关信息
基本信息
- 语言: 中文
- 描述: 根据提供的材料检索信息并回答问题
- 特点: 快速准确提取关键信息清晰简洁地回答
相关信息
{context}
回答要求
3 weeks ago
1. 请仔细甄别原问题与提供材料的关联性不相关的材料必须忽略绝对不要包含无关信息
2. 如果发现相关信息与原来的问题契合度低请直接回答"未找到相关信息"
3. 严格保持原文中图片与上下文的顺序关系确保语义相关性
4. 使用Markdown格式返回包含适当的标题列表和代码块
5. 直接返回Markdown内容不要包含额外解释或说明
6. 依托给定的资料快速准确地回答问题
7. 如果未提供相关信息请直接回答"未找到相关信息"
3 weeks ago
8. 确保内容结构清晰便于前端展示
3 weeks ago
"""
3 weeks ago
3 weeks ago
async def generate_response_stream():
try:
# 流式调用大模型
stream = await client.chat.completions.create(
model=Config.MODEL_NAME,
messages=[
{'role': 'user', 'content': prompt}
],
max_tokens=8000,
stream=True # 启用流式模式
)
3 weeks ago
# 流式返回模型生成的回复
async for chunk in stream:
if chunk.choices[0].delta.content:
yield f"data: {json.dumps({'reply': chunk.choices[0].delta.content}, ensure_ascii=False)}\n\n"
except Exception as e:
yield f"data: {json.dumps({'error': str(e)})}\n\n"
return EventSourceResponse(generate_response_stream())
3 weeks ago
4 weeks ago
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8000)