You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

233 lines
7.0 KiB

2 weeks ago
import logging
import logging.config
import os
import numpy as np
from lightrag import LightRAG
from lightrag.kg.shared_storage import initialize_pipeline_status
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
from lightrag.utils import EmbeddingFunc, logger, set_verbose_debug
2 weeks ago
from openai import OpenAI
2 weeks ago
from Config.Config import *
2 weeks ago
async def print_stream(stream):
async for chunk in stream:
if chunk:
print(chunk, end="", flush=True)
2 weeks ago
2 weeks ago
def configure_logging():
for logger_name in ["uvicorn", "uvicorn.access", "uvicorn.error", "lightrag"]:
logger_instance = logging.getLogger(logger_name)
logger_instance.handlers = []
logger_instance.filters = []
log_dir = os.getenv("LOG_DIR", os.getcwd())
log_file_path = os.path.abspath(
os.path.join(log_dir, "./Logs/lightrag.log")
)
print(f"\nLightRAG log file: {log_file_path}\n")
os.makedirs(os.path.dirname(log_dir), exist_ok=True)
log_max_bytes = int(os.getenv("LOG_MAX_BYTES", 10485760))
log_backup_count = int(os.getenv("LOG_BACKUP_COUNT", 5))
logging.config.dictConfig(
{
"version": 1,
"disable_existing_loggers": False,
"formatters": {
"default": {
"format": "%(levelname)s: %(message)s",
},
"detailed": {
"format": "%(asctime)s - %(name)s - %(levelname)s - %(message)s",
},
},
"handlers": {
"console": {
"formatter": "default",
"class": "logging.StreamHandler",
"stream": "ext://sys.stderr",
},
"file": {
"formatter": "detailed",
"class": "logging.handlers.RotatingFileHandler",
"filename": log_file_path,
"maxBytes": log_max_bytes,
"backupCount": log_backup_count,
"encoding": "utf-8",
},
},
"loggers": {
"lightrag": {
"handlers": ["console", "file"],
"level": "INFO",
"propagate": False,
},
},
}
)
logger.setLevel(logging.INFO)
set_verbose_debug(os.getenv("VERBOSE_DEBUG", "false").lower() == "true")
async def llm_model_func(
prompt, system_prompt=None, history_messages=None, **kwargs
) -> str:
return await openai_complete_if_cache(
2 weeks ago
os.getenv("LLM_MODEL", LLM_MODEL_NAME),
2 weeks ago
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
2 weeks ago
api_key=LLM_API_KEY,
base_url=LLM_BASE_URL,
2 weeks ago
**kwargs,
)
2 weeks ago
2 weeks ago
async def embedding_func(texts: list[str]) -> np.ndarray:
return await openai_embed(
texts,
2 weeks ago
model=EMBED_MODEL_NAME,
api_key=EMBED_API_KEY,
base_url=EMBED_BASE_URL
2 weeks ago
)
2 weeks ago
2 weeks ago
async def initialize_rag(working_dir):
rag = LightRAG(
working_dir=working_dir,
llm_model_func=llm_model_func,
embedding_func=EmbeddingFunc(
2 weeks ago
embedding_dim=EMBED_DIM,
max_token_size=EMBED_MAX_TOKEN_SIZE,
2 weeks ago
func=embedding_func
),
)
await rag.initialize_storages()
await initialize_pipeline_status()
2 weeks ago
return rag
2 weeks ago
def create_llm_model_func():
def llm_model_func(prompt, system_prompt=None, history_messages=[], **kwargs):
return openai_complete_if_cache(
LLM_MODEL_NAME,
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
api_key=LLM_API_KEY,
base_url=LLM_BASE_URL,
**kwargs,
)
return llm_model_func
def create_embedding_func():
return EmbeddingFunc(
embedding_dim=1024,
max_token_size=8192,
func=lambda texts: openai_embed(
texts,
model=EMBED_MODEL_NAME,
api_key=EMBED_API_KEY,
base_url=EMBED_BASE_URL,
),
2 weeks ago
)
def create_vision_model_func(llm_model_func):
def vision_model_func(
prompt, system_prompt=None, history_messages=[], image_data=None, **kwargs
):
if image_data:
return openai_complete_if_cache(
VISION_MODEL_NAME,
"",
system_prompt=None,
history_messages=[],
messages=[
{"role": "system", "content": system_prompt}
if system_prompt
else None,
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{image_data}"
},
},
],
}
if image_data
else {"role": "user", "content": prompt},
],
api_key=VISION_API_KEY,
base_url=VISION_BASE_URL,
**kwargs,
)
else:
return llm_model_func(prompt, system_prompt, history_messages, **kwargs)
2 weeks ago
return vision_model_func
2 weeks ago
def format_exam_content(raw_text, output_path):
client = OpenAI(
api_key=LLM_API_KEY,
2 weeks ago
base_url=LLM_BASE_URL
2 weeks ago
)
2 weeks ago
"""
将OCR识别的原始试卷内容格式化为标准试题格式
参数:
client: OpenAI客户端实例
raw_text: OCR识别的原始文本
output_path: 输出文件路径
返回:
格式化后的试题内容
"""
prompt = """
我将提供一份markdown格式的试卷请帮我整理出每道题的以下内容
1. 题目序号
2. 题目内容自动识别并添加$$$包裹数学公式
3. 选项如果有
4. 答案
5. 解析
要求
- 一道题一道题输出不要使用表格
- 自动检测数学表达式并用$$$正确包裹
- 确保公式中的特殊字符正确转义
- 除题目内容外不要输出其它无关信息
内容如下
"""
prompt += raw_text
2 weeks ago
2 weeks ago
completion = client.chat.completions.create(
model="deepseek-v3",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt},
],
2 weeks ago
max_tokens=16384 # 支持用户设置16K(16384)及以下的数值。
2 weeks ago
)
2 weeks ago
2 weeks ago
formatted_content = completion.choices[0].message.content
2 weeks ago
2 weeks ago
with open(output_path, "w", encoding="utf-8") as f:
f.write(formatted_content)