2025-09-07 07:44:43 +08:00
|
|
|
|
import time
|
2025-09-07 07:25:00 +08:00
|
|
|
|
|
2025-09-07 07:27:53 +08:00
|
|
|
|
"""
|
|
|
|
|
在记忆库准备好后,我们先模拟一段包含两轮的完整对话。
|
|
|
|
|
对话结束后,把这段对话历史消息写入记忆库。然后再开启一个新话题,提出和刚才相关的问题,
|
|
|
|
|
AI 就能用刚写入的记忆来回答。
|
|
|
|
|
注意:首次写入需要 3–5 分钟建立索引,这段时间内检索会报错。
|
|
|
|
|
"""
|
2025-09-07 07:44:43 +08:00
|
|
|
|
import json
|
|
|
|
|
from VikingDBMemoryService import initialize_services, ensure_collection_exists, search_relevant_memories
|
2025-09-07 07:25:00 +08:00
|
|
|
|
def handle_conversation_turn(memory_service, llm_client, collection_name, user_id, user_message, conversation_history):
|
|
|
|
|
"""处理一轮对话,包括记忆搜索和LLM响应。"""
|
|
|
|
|
print("\n" + "=" * 60)
|
|
|
|
|
print(f"用户: {user_message}")
|
|
|
|
|
|
|
|
|
|
relevant_memories = search_relevant_memories(memory_service, collection_name, user_id, user_message)
|
|
|
|
|
|
|
|
|
|
system_prompt = "你是一个富有同情心、善于倾听的AI伙伴,拥有长期记忆能力。你的目标是为用户提供情感支持和温暖的陪伴。"
|
|
|
|
|
if relevant_memories:
|
|
|
|
|
memory_context = "\n".join(
|
|
|
|
|
[f"- {json.dumps(mem['memory_info'], ensure_ascii=False)}" for mem in relevant_memories])
|
|
|
|
|
system_prompt += f"\n\n这是我们过去的一些对话记忆,请参考:\n{memory_context}\n\n请利用这些信息来更好地理解和回应用户。"
|
|
|
|
|
|
|
|
|
|
print("AI正在思考...")
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
messages = [{"role": "system", "content": system_prompt}] + conversation_history + [
|
|
|
|
|
{"role": "user", "content": user_message}]
|
|
|
|
|
completion = llm_client.chat.completions.create(
|
|
|
|
|
model="doubao-seed-1-6-flash-250715",
|
|
|
|
|
messages=messages
|
|
|
|
|
)
|
|
|
|
|
assistant_reply = completion.choices[0].message.content
|
|
|
|
|
except Exception as e:
|
|
|
|
|
print(f"LLM调用失败: {e}")
|
|
|
|
|
assistant_reply = "抱歉,我现在有点混乱,无法回应。我们可以稍后再聊吗?"
|
|
|
|
|
|
|
|
|
|
print(f"伙伴: {assistant_reply}")
|
|
|
|
|
|
|
|
|
|
conversation_history.extend([
|
|
|
|
|
{"role": "user", "content": user_message},
|
|
|
|
|
{"role": "assistant", "content": assistant_reply}
|
|
|
|
|
])
|
|
|
|
|
return assistant_reply
|
|
|
|
|
|
|
|
|
|
def archive_conversation(memory_service, collection_name, user_id, assistant_id, conversation_history, topic_name):
|
|
|
|
|
"""将对话历史归档到记忆数据库。"""
|
|
|
|
|
if not conversation_history:
|
|
|
|
|
print("没有对话可以归档。")
|
|
|
|
|
return False
|
|
|
|
|
|
|
|
|
|
print(f"\n正在归档关于 '{topic_name}' 的对话...")
|
|
|
|
|
session_id = f"{topic_name}_{int(time.time())}"
|
|
|
|
|
metadata = {
|
|
|
|
|
"default_user_id": user_id,
|
|
|
|
|
"default_assistant_id": assistant_id,
|
|
|
|
|
"time": int(time.time() * 1000)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
memory_service.add_session(
|
|
|
|
|
collection_name=collection_name,
|
|
|
|
|
session_id=session_id,
|
|
|
|
|
messages=conversation_history,
|
|
|
|
|
metadata=metadata
|
|
|
|
|
)
|
|
|
|
|
print(f"对话已成功归档,会话ID: {session_id}")
|
|
|
|
|
print("正在等待记忆索引更新...")
|
|
|
|
|
return True
|
|
|
|
|
except Exception as e:
|
|
|
|
|
print(f"归档对话失败: {e}")
|
|
|
|
|
return False
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
|
print("开始端到端记忆测试...")
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
memory_service, llm_client = initialize_services()
|
|
|
|
|
collection_name = "emotional_support"
|
2025-09-07 07:27:53 +08:00
|
|
|
|
user_id = "xiaoming" # 用户ID:小明
|
|
|
|
|
assistant_id = "assistant1" # 助手ID:助手1
|
2025-09-07 07:25:00 +08:00
|
|
|
|
ensure_collection_exists(memory_service, collection_name)
|
|
|
|
|
except Exception as e:
|
|
|
|
|
print(f"初始化失败: {e}")
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
print("\n--- 阶段 1: 初始对话 ---")
|
|
|
|
|
initial_conversation_history = []
|
|
|
|
|
handle_conversation_turn(
|
|
|
|
|
memory_service, llm_client, collection_name, user_id,
|
|
|
|
|
"你好,我是小明,今年18岁,但压力好大。",
|
|
|
|
|
initial_conversation_history
|
|
|
|
|
)
|
|
|
|
|
handle_conversation_turn(
|
|
|
|
|
memory_service, llm_client, collection_name, user_id,
|
|
|
|
|
"马上就要高考了,家里人的期待好高。",
|
|
|
|
|
initial_conversation_history
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
print("\n--- 阶段 2: 归档记忆 ---")
|
|
|
|
|
archive_conversation(
|
|
|
|
|
memory_service, collection_name, user_id, assistant_id,
|
|
|
|
|
initial_conversation_history, "study_stress_discussion"
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
print("\n--- 阶段 3: 验证记忆 ---")
|
|
|
|
|
verification_conversation_history = []
|
|
|
|
|
handle_conversation_turn(
|
|
|
|
|
memory_service, llm_client, collection_name, user_id,
|
|
|
|
|
"我最近很焦虑,不知道该怎么办。",
|
|
|
|
|
verification_conversation_history
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
print("\n端到端记忆测试完成!")
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
main()
|