Files
dsProject/dsSchoolBuddy/ElasticSearch/T6_SelectByVector.py

198 lines
5.6 KiB
Python
Raw Normal View History

2025-08-19 08:37:29 +08:00
import json
import warnings
import requests
from elasticsearch import Elasticsearch
from langchain_openai import OpenAIEmbeddings
from pydantic import SecretStr
from Config import Config
from Config.Config import ES_CONFIG
# 抑制HTTPS相关警告
warnings.filterwarnings('ignore', message='Connecting to .* using TLS with verify_certs=False is insecure')
warnings.filterwarnings('ignore', message='Unverified HTTPS request is being made to host')
# 从配置中获取重排模型参数
RERANK_MODEL = Config.RERANK_MODEL
RERANK_BASE_URL = Config.RERANK_BASE_URL
RERANK_BINDING_API_KEY = Config.RERANK_BINDING_API_KEY
def init_es_connection() -> Elasticsearch:
"""
初始化Elasticsearch连接
返回:
Elasticsearch: ES连接对象
"""
return Elasticsearch(
hosts=Config.ES_CONFIG['hosts'],
basic_auth=Config.ES_CONFIG['basic_auth'],
verify_certs=False
)
def get_query_embedding(query: str) -> list:
"""
将查询文本转换为向量
参数:
query: 查询文本
返回:
list: 向量表示
"""
# 创建嵌入模型
embeddings = OpenAIEmbeddings(
model=Config.EMBED_MODEL_NAME,
base_url=Config.EMBED_BASE_URL,
api_key=SecretStr(Config.EMBED_API_KEY)
)
# 生成查询向量
query_embedding = embeddings.embed_query(query)
return query_embedding
def search_by_vector(es: Elasticsearch, index_name: str, query_embedding: list, k: int = 10) -> list:
"""
在Elasticsearch中按向量搜索
参数:
es: ES连接对象
index_name: 索引名称
query_embedding: 查询向量
k: 返回结果数量
返回:
list: 搜索结果
"""
# 构建向量查询DSL
query = {
"query": {
"script_score": {
"query": {"match_all": {}},
"script": {
"source": "cosineSimilarity(params.query_vector, 'embedding') + 1.0",
"params": {
"query_vector": query_embedding
}
}
}
},
"size": k
}
# 执行查询
try:
response = es.search(index=index_name, body=query)
return response['hits']['hits']
except Exception as e:
print(f"向量查询失败: {e}")
return []
def rerank_results(query: str, results: list) -> list:
"""
使用重排模型对结果进行排序
参数:
query: 查询文本
results: 初始搜索结果
返回:
list: 重排后的结果
"""
if len(results) <= 1:
# 结果太少,无需重排
return [(result, 1.0) for result in results]
# 准备重排请求数据
rerank_data = {
"model": RERANK_MODEL,
"query": query,
"documents": [result['_source']['user_input'] for result in results],
"top_n": len(results)
}
# 调用重排API
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {RERANK_BINDING_API_KEY}"
}
try:
response = requests.post(RERANK_BASE_URL, headers=headers, data=json.dumps(rerank_data))
response.raise_for_status()
rerank_result = response.json()
# 处理重排结果
reranked_results = []
if "results" in rerank_result:
for item in rerank_result["results"]:
doc_idx = item.get("index")
score = item.get("relevance_score", 0.0)
if 0 <= doc_idx < len(results):
reranked_results.append((results[doc_idx], score))
else:
print("警告: 无法识别重排API响应格式")
reranked_results = [(result, 0.0) for result in results]
return reranked_results
except Exception as e:
print(f"重排模型调用失败: {e}")
return [(result, 0.0) for result in results]
def display_results(results: list) -> None:
"""
展示查询结果
参数:
results: 查询结果列表每个元素是(结果对象, 分数)的元组
"""
if not results:
print("未找到相关数据。")
return
print(f"找到 {len(results)} 条相关数据:")
for i, (result, score) in enumerate(results, 1):
source = result['_source']
print(f"{i}. ID: {result['_id']}")
print(f" 相似度分数: {score:.4f}")
print(f" 内容: {source.get('user_input', '')}")
print(f" 标签: {source['tags']['tags']}")
print(f" 时间: {source['timestamp']}")
print("-" * 50)
def main():
# 初始化ES连接
es = init_es_connection()
# 获取用户输入
query_text = input("请输入查询关键词(例如: 高性能的混凝土): ")
if not query_text:
query_text = "高性能的混凝土"
print(f"未输入查询关键词,使用默认值: {query_text}")
# 生成查询向量
print("正在生成查询向量...")
query_embedding = get_query_embedding(query_text)
# 执行向量搜索
print("正在执行向量搜索...")
search_results = search_by_vector(es, ES_CONFIG['index_name'], query_embedding, k=10)
print(f"向量搜索结果数量: {len(search_results)}")
# 重排结果
print("正在重排结果...")
reranked_results = rerank_results(query_text, search_results)
# 展示结果
display_results(reranked_results)
if __name__ == "__main__":
main()