198 lines
5.6 KiB
Python
198 lines
5.6 KiB
Python
|
import json
|
|||
|
import warnings
|
|||
|
|
|||
|
import requests
|
|||
|
from elasticsearch import Elasticsearch
|
|||
|
from langchain_openai import OpenAIEmbeddings
|
|||
|
from pydantic import SecretStr
|
|||
|
|
|||
|
from Config import Config
|
|||
|
from Config.Config import ES_CONFIG
|
|||
|
|
|||
|
# 抑制HTTPS相关警告
|
|||
|
warnings.filterwarnings('ignore', message='Connecting to .* using TLS with verify_certs=False is insecure')
|
|||
|
warnings.filterwarnings('ignore', message='Unverified HTTPS request is being made to host')
|
|||
|
|
|||
|
# 从配置中获取重排模型参数
|
|||
|
RERANK_MODEL = Config.RERANK_MODEL
|
|||
|
RERANK_BASE_URL = Config.RERANK_BASE_URL
|
|||
|
RERANK_BINDING_API_KEY = Config.RERANK_BINDING_API_KEY
|
|||
|
|
|||
|
|
|||
|
def init_es_connection() -> Elasticsearch:
|
|||
|
"""
|
|||
|
初始化Elasticsearch连接
|
|||
|
|
|||
|
返回:
|
|||
|
Elasticsearch: ES连接对象
|
|||
|
"""
|
|||
|
return Elasticsearch(
|
|||
|
hosts=Config.ES_CONFIG['hosts'],
|
|||
|
basic_auth=Config.ES_CONFIG['basic_auth'],
|
|||
|
verify_certs=False
|
|||
|
)
|
|||
|
|
|||
|
|
|||
|
def get_query_embedding(query: str) -> list:
|
|||
|
"""
|
|||
|
将查询文本转换为向量
|
|||
|
|
|||
|
参数:
|
|||
|
query: 查询文本
|
|||
|
|
|||
|
返回:
|
|||
|
list: 向量表示
|
|||
|
"""
|
|||
|
# 创建嵌入模型
|
|||
|
embeddings = OpenAIEmbeddings(
|
|||
|
model=Config.EMBED_MODEL_NAME,
|
|||
|
base_url=Config.EMBED_BASE_URL,
|
|||
|
api_key=SecretStr(Config.EMBED_API_KEY)
|
|||
|
)
|
|||
|
|
|||
|
# 生成查询向量
|
|||
|
query_embedding = embeddings.embed_query(query)
|
|||
|
return query_embedding
|
|||
|
|
|||
|
|
|||
|
def search_by_vector(es: Elasticsearch, index_name: str, query_embedding: list, k: int = 10) -> list:
|
|||
|
"""
|
|||
|
在Elasticsearch中按向量搜索
|
|||
|
|
|||
|
参数:
|
|||
|
es: ES连接对象
|
|||
|
index_name: 索引名称
|
|||
|
query_embedding: 查询向量
|
|||
|
k: 返回结果数量
|
|||
|
|
|||
|
返回:
|
|||
|
list: 搜索结果
|
|||
|
"""
|
|||
|
# 构建向量查询DSL
|
|||
|
query = {
|
|||
|
"query": {
|
|||
|
"script_score": {
|
|||
|
"query": {"match_all": {}},
|
|||
|
"script": {
|
|||
|
"source": "cosineSimilarity(params.query_vector, 'embedding') + 1.0",
|
|||
|
"params": {
|
|||
|
"query_vector": query_embedding
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
},
|
|||
|
"size": k
|
|||
|
}
|
|||
|
|
|||
|
# 执行查询
|
|||
|
try:
|
|||
|
response = es.search(index=index_name, body=query)
|
|||
|
return response['hits']['hits']
|
|||
|
except Exception as e:
|
|||
|
print(f"向量查询失败: {e}")
|
|||
|
return []
|
|||
|
|
|||
|
|
|||
|
def rerank_results(query: str, results: list) -> list:
|
|||
|
"""
|
|||
|
使用重排模型对结果进行排序
|
|||
|
|
|||
|
参数:
|
|||
|
query: 查询文本
|
|||
|
results: 初始搜索结果
|
|||
|
|
|||
|
返回:
|
|||
|
list: 重排后的结果
|
|||
|
"""
|
|||
|
if len(results) <= 1:
|
|||
|
# 结果太少,无需重排
|
|||
|
return [(result, 1.0) for result in results]
|
|||
|
|
|||
|
# 准备重排请求数据
|
|||
|
rerank_data = {
|
|||
|
"model": RERANK_MODEL,
|
|||
|
"query": query,
|
|||
|
"documents": [result['_source']['user_input'] for result in results],
|
|||
|
"top_n": len(results)
|
|||
|
}
|
|||
|
|
|||
|
# 调用重排API
|
|||
|
headers = {
|
|||
|
"Content-Type": "application/json",
|
|||
|
"Authorization": f"Bearer {RERANK_BINDING_API_KEY}"
|
|||
|
}
|
|||
|
|
|||
|
try:
|
|||
|
response = requests.post(RERANK_BASE_URL, headers=headers, data=json.dumps(rerank_data))
|
|||
|
response.raise_for_status()
|
|||
|
rerank_result = response.json()
|
|||
|
|
|||
|
# 处理重排结果
|
|||
|
reranked_results = []
|
|||
|
if "results" in rerank_result:
|
|||
|
for item in rerank_result["results"]:
|
|||
|
doc_idx = item.get("index")
|
|||
|
score = item.get("relevance_score", 0.0)
|
|||
|
if 0 <= doc_idx < len(results):
|
|||
|
reranked_results.append((results[doc_idx], score))
|
|||
|
else:
|
|||
|
print("警告: 无法识别重排API响应格式")
|
|||
|
reranked_results = [(result, 0.0) for result in results]
|
|||
|
|
|||
|
return reranked_results
|
|||
|
except Exception as e:
|
|||
|
print(f"重排模型调用失败: {e}")
|
|||
|
return [(result, 0.0) for result in results]
|
|||
|
|
|||
|
|
|||
|
def display_results(results: list) -> None:
|
|||
|
"""
|
|||
|
展示查询结果
|
|||
|
|
|||
|
参数:
|
|||
|
results: 查询结果列表,每个元素是(结果对象, 分数)的元组
|
|||
|
"""
|
|||
|
if not results:
|
|||
|
print("未找到相关数据。")
|
|||
|
return
|
|||
|
|
|||
|
print(f"找到 {len(results)} 条相关数据:")
|
|||
|
for i, (result, score) in enumerate(results, 1):
|
|||
|
source = result['_source']
|
|||
|
print(f"{i}. ID: {result['_id']}")
|
|||
|
print(f" 相似度分数: {score:.4f}")
|
|||
|
print(f" 内容: {source.get('user_input', '')}")
|
|||
|
print(f" 标签: {source['tags']['tags']}")
|
|||
|
print(f" 时间: {source['timestamp']}")
|
|||
|
print("-" * 50)
|
|||
|
|
|||
|
|
|||
|
def main():
|
|||
|
# 初始化ES连接
|
|||
|
es = init_es_connection()
|
|||
|
|
|||
|
# 获取用户输入
|
|||
|
query_text = input("请输入查询关键词(例如: 高性能的混凝土): ")
|
|||
|
if not query_text:
|
|||
|
query_text = "高性能的混凝土"
|
|||
|
print(f"未输入查询关键词,使用默认值: {query_text}")
|
|||
|
|
|||
|
# 生成查询向量
|
|||
|
print("正在生成查询向量...")
|
|||
|
query_embedding = get_query_embedding(query_text)
|
|||
|
|
|||
|
# 执行向量搜索
|
|||
|
print("正在执行向量搜索...")
|
|||
|
search_results = search_by_vector(es, ES_CONFIG['index_name'], query_embedding, k=10)
|
|||
|
print(f"向量搜索结果数量: {len(search_results)}")
|
|||
|
|
|||
|
# 重排结果
|
|||
|
print("正在重排结果...")
|
|||
|
reranked_results = rerank_results(query_text, search_results)
|
|||
|
|
|||
|
# 展示结果
|
|||
|
display_results(reranked_results)
|
|||
|
|
|||
|
|
|||
|
if __name__ == "__main__":
|
|||
|
main()
|