You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1 line
146 KiB

2 weeks ago
{"embedding_dim": 1024, "data": [{"__id__": "ent-043d3380caf00eb2310dd3faa6a84004", "__created_at__": 1752211508, "entity_name": "Triangle ABC", "content": "Triangle ABC\nTriangle ABC is the primary geometric figure used in the proof of the triangle inequality and angle relationships.", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "ent-2c9cf7515ca52c1738f9bde898fb527a", "__created_at__": 1752211508, "entity_name": "Point D", "content": "Point D\nPoint D is constructed by extending line AB and adding segment BD equal to BC, forming an isosceles triangle.", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "ent-0da27fee16f5a66aaa3b12733a1859a8", "__created_at__": 1752211508, "entity_name": "Point P", "content": "Point P\nPoint P is an arbitrary interior point of triangle ABC, used to demonstrate angle relationships.", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "ent-db5203dcd8d28444cb765e0a69fabc39", "__created_at__": 1752211508, "entity_name": "Euclid's Fifth Postulate", "content": "Euclid's Fifth Postulate\nEuclid's Fifth Postulate is referenced to justify angle comparisons in the geometric proof.", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "ent-81488909290e49f135623bf765840588", "__created_at__": 1752211508, "entity_name": "Proposition 19 of the Elements", "content": "Proposition 19 of the Elements\nProposition 19 from Euclid's Elements is cited to establish the relationship between angles and opposite sides in the proof.", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "ent-8ba3a27004f706af0260e986bc6a092f", "__created_at__": 1752211508, "entity_name": "三角形ABC", "content": "三角形ABC\n三角形ABC是证明三角形三边关系的核心几何图形用于展示边与角的几何性质。", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "ent-8a5ebf15695060ebf00d53ab04833554", "__created_at__": 1752211508, "entity_name": "三角不等式", "content": "三角不等式\n三角不等式是几何学中描述三角形边长关系的基本定理形式为|AB|+|BC||AC|。", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "ent-c28aba2ebce9095cd8d78f1df53c3cbe", "__created_at__": 1752211508, "entity_name": "欧几里得第五公理", "content": "欧几里得第五公理\n欧几里得第五公理是几何学基础公理之一用于证明角的大小关系。", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "ent-33baeb08781cf03b07b33ac6f4b4165b", "__created_at__": 1752211508, "entity_name": "几何原本", "content": "几何原本\n《几何原本》是欧几里得的经典数学著作包含命题19等核心几何定理。", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "ent-9ac5593950faa90a93f1b5feec7e9295", "__created_at__": 1752211508, "entity_name": "命题19", "content": "命题19\n命题19指出大角对大边是三角形边角关系的关键依据。", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "ent-1c05bc513bda1ef4c9e16fbdd1e1776a", "__created_at__": 1752211508, "entity_name": "点D", "content": "点D\n点D是通过延长AB并添加BD=BC构造的辅助点形成等腰三角形BCD。", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "ent-53f81d92778b193b6fdd66710857e1d7", "__created_at__": 1752211508, "entity_name": "点P", "content": "点P\n点P是三角形ABC内部的任意点用于证明角∠BPC与角∠A的关系。", "source_id": "chunk-75b23a7e22383153b011bd3d121184f0", "file_path": "unknown_source"}, {"__id__": "ent-96d4cdff8ed57e93e3b3d843cffe3af7", "__created_at__": 1752211508, "entity_name": "BP", "content": "BP\nBP is