Files
dsProject/dsSchoolBuddy/ElasticSearch/T6_SelectByVector.py

176 lines
5.2 KiB
Python
Raw Normal View History

2025-08-19 08:37:29 +08:00
import json
import requests
from langchain_openai import OpenAIEmbeddings
from pydantic import SecretStr
from Config import Config
2025-08-19 09:36:51 +08:00
from ElasticSearch.Utils.EsSearchUtil import EsSearchUtil
2025-08-19 08:37:29 +08:00
def get_query_embedding(query: str) -> list:
"""
将查询文本转换为向量
参数:
query: 查询文本
返回:
list: 向量表示
"""
# 创建嵌入模型
embeddings = OpenAIEmbeddings(
model=Config.EMBED_MODEL_NAME,
base_url=Config.EMBED_BASE_URL,
api_key=SecretStr(Config.EMBED_API_KEY)
)
# 生成查询向量
query_embedding = embeddings.embed_query(query)
return query_embedding
2025-08-19 09:36:51 +08:00
def search_by_vector(search_util: EsSearchUtil, query_embedding: list, k: int = 10) -> list:
2025-08-19 08:37:29 +08:00
"""
在Elasticsearch中按向量搜索
参数:
2025-08-19 09:36:51 +08:00
search_util: EsSearchUtil实例
2025-08-19 08:37:29 +08:00
query_embedding: 查询向量
k: 返回结果数量
返回:
list: 搜索结果
"""
2025-08-19 09:36:51 +08:00
# 从连接池获取连接
conn = search_util.es_pool.get_connection()
try:
# 构建向量查询DSL
query = {
"query": {
"script_score": {
"query": {"match_all": {}},
"script": {
"source": "cosineSimilarity(params.query_vector, 'embedding') + 1.0",
"params": {
"query_vector": query_embedding
}
2025-08-19 08:37:29 +08:00
}
}
2025-08-19 09:36:51 +08:00
},
"size": k
}
2025-08-19 08:37:29 +08:00
2025-08-19 09:36:51 +08:00
# 执行查询
response = conn.search(index=search_util.es_config['index_name'], body=query)
2025-08-19 08:37:29 +08:00
return response['hits']['hits']
except Exception as e:
print(f"向量查询失败: {e}")
return []
2025-08-19 09:36:51 +08:00
finally:
# 释放连接回连接池
search_util.es_pool.release_connection(conn)
2025-08-19 08:37:29 +08:00
def rerank_results(query: str, results: list) -> list:
"""
使用重排模型对结果进行排序
参数:
query: 查询文本
results: 初始搜索结果
返回:
list: 重排后的结果
"""
if len(results) <= 1:
# 结果太少,无需重排
return [(result, 1.0) for result in results]
# 准备重排请求数据
rerank_data = {
2025-08-19 09:37:30 +08:00
"model": Config.RERANK_MODEL,
2025-08-19 08:37:29 +08:00
"query": query,
"documents": [result['_source']['user_input'] for result in results],
"top_n": len(results)
}
# 调用重排API
headers = {
"Content-Type": "application/json",
2025-08-19 09:37:30 +08:00
"Authorization": f"Bearer {Config.RERANK_BINDING_API_KEY}"
2025-08-19 08:37:29 +08:00
}
try:
2025-08-19 09:37:30 +08:00
response = requests.post(Config.RERANK_BASE_URL, headers=headers, data=json.dumps(rerank_data))
2025-08-19 08:37:29 +08:00
response.raise_for_status()
rerank_result = response.json()
# 处理重排结果
reranked_results = []
if "results" in rerank_result:
for item in rerank_result["results"]:
doc_idx = item.get("index")
score = item.get("relevance_score", 0.0)
if 0 <= doc_idx < len(results):
reranked_results.append((results[doc_idx], score))
else:
print("警告: 无法识别重排API响应格式")
reranked_results = [(result, 0.0) for result in results]
return reranked_results
except Exception as e:
print(f"重排模型调用失败: {e}")
return [(result, 0.0) for result in results]
def display_results(results: list) -> None:
"""
展示查询结果
参数:
results: 查询结果列表每个元素是(结果对象, 分数)的元组
"""
if not results:
print("未找到相关数据。")
return
print(f"找到 {len(results)} 条相关数据:")
for i, (result, score) in enumerate(results, 1):
source = result['_source']
print(f"{i}. ID: {result['_id']}")
print(f" 相似度分数: {score:.4f}")
print(f" 内容: {source.get('user_input', '')}")
2025-08-19 09:36:51 +08:00
print(f" 标签: {source['tags']['tags'] if 'tags' in source and 'tags' in source['tags'] else ''}")
print(f" 时间: {source['timestamp'] if 'timestamp' in source else ''}")
2025-08-19 08:37:29 +08:00
print("-" * 50)
def main():
2025-08-19 09:36:51 +08:00
# 创建EsSearchUtil实例已封装连接池
search_util = EsSearchUtil(Config.ES_CONFIG)
2025-08-19 08:37:29 +08:00
# 获取用户输入
query_text = input("请输入查询关键词(例如: 高性能的混凝土): ")
if not query_text:
query_text = "高性能的混凝土"
print(f"未输入查询关键词,使用默认值: {query_text}")
# 生成查询向量
print("正在生成查询向量...")
query_embedding = get_query_embedding(query_text)
# 执行向量搜索
print("正在执行向量搜索...")
2025-08-19 09:36:51 +08:00
search_results = search_by_vector(search_util, query_embedding, k=10)
2025-08-19 08:37:29 +08:00
print(f"向量搜索结果数量: {len(search_results)}")
# 重排结果
print("正在重排结果...")
reranked_results = rerank_results(query_text, search_results)
# 展示结果
display_results(reranked_results)
if __name__ == "__main__":
main()