Files
dsProject/dsSchoolBuddy/ElasticSearch/T3_InsertData.py

145 lines
5.3 KiB
Python
Raw Normal View History

2025-08-19 08:16:39 +08:00
import warnings
2025-08-19 08:14:58 +08:00
import os
import time
2025-08-19 08:16:39 +08:00
from Config import Config
2025-08-19 07:34:39 +08:00
from elasticsearch import Elasticsearch
2025-08-19 08:14:58 +08:00
from langchain_core.documents import Document
from Util.VectorUtil import text_to_vector_db # 导入向量化工具函数
2025-08-19 08:16:39 +08:00
from langchain_openai import OpenAIEmbeddings # 直接导入嵌入模型
from pydantic import SecretStr # 用于包装API密钥
2025-08-19 07:34:39 +08:00
# 抑制HTTPS相关警告
warnings.filterwarnings('ignore', message='Connecting to .* using TLS with verify_certs=False is insecure')
warnings.filterwarnings('ignore', message='Unverified HTTPS request is being made to host')
2025-08-19 08:14:58 +08:00
def insert_long_text_to_es(long_text: str, tags: list = None) -> bool:
"""
将长文本向量化并插入到Elasticsearch
参数:
long_text: 要插入的长文本
tags: 可选的标签列表
返回:
bool: 插入是否成功
"""
try:
# 1. 初始化Elasticsearch连接
es = Elasticsearch(
hosts=Config.ES_CONFIG['hosts'],
basic_auth=Config.ES_CONFIG['basic_auth'],
verify_certs=False
)
# 2. 检查索引是否存在,不存在则创建
index_name = Config.ES_CONFIG['index_name']
if not es.indices.exists(index=index_name):
# 定义mapping结构
mapping = {
"mappings": {
"properties": {
"embedding": {
"type": "dense_vector",
"dims": 1024, # 根据实际embedding维度调整
"index": True,
"similarity": "l2_norm"
},
"user_input": {"type": "text"},
"tags": {
"type": "object",
"properties": {
"tags": {"type": "keyword"},
"full_content": {"type": "text"}
}
},
"timestamp": {"type": "date"}
}
}
2025-08-19 07:34:39 +08:00
}
2025-08-19 08:14:58 +08:00
es.indices.create(index=index_name, body=mapping)
print(f"索引 '{index_name}' 创建成功")
2025-08-19 08:16:39 +08:00
# 3. 创建文档对象
2025-08-19 08:14:58 +08:00
docs = [Document(page_content=long_text, metadata={"source": "user_provided_text"})]
# 4. 获取当前时间
timestamp = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
# 5. 准备标签
if tags is None:
tags = ["general_text"]
tags_dict = {"tags": tags, "full_content": long_text}
2025-08-19 08:16:39 +08:00
# 6. 直接创建嵌入模型并生成向量
embeddings = OpenAIEmbeddings(
model=Config.EMBED_MODEL_NAME,
base_url=Config.EMBED_BASE_URL,
api_key=SecretStr(Config.EMBED_API_KEY)
)
2025-08-19 08:14:58 +08:00
2025-08-19 08:16:39 +08:00
# 7. 生成文本嵌入向量
embedding = embeddings.embed_documents([long_text])[0]
2025-08-19 08:14:58 +08:00
# 8. 插入数据到Elasticsearch
doc = {
'tags': tags_dict,
'user_input': long_text[:500], # 取前500个字符作为摘要
'timestamp': timestamp,
'embedding': embedding
}
es.index(index=index_name, document=doc)
print(f"长文本数据插入成功")
return True
except Exception as e:
print(f"插入数据失败: {e}")
return False
def process_text_directory(txt_dir: str) -> None:
"""
处理指定目录下的所有文本文件将其向量化并插入到Elasticsearch
参数:
txt_dir: 包含文本文件的目录路径
"""
for filename in os.listdir(txt_dir):
if filename.endswith('.txt'):
filepath = os.path.join(txt_dir, filename)
with open(filepath, 'r', encoding='utf-8') as f:
full_content = f.read()
if not full_content:
print(f"跳过空文件: {filename}")
continue
print(f"正在处理文件: {filename}")
# 提取标签
x = filename.split("_")
if len(x) >= 2:
selected_tags = [x[0] + "_" + x[1]]
else:
selected_tags = ["uncategorized"]
# 插入文本
insert_long_text_to_es(full_content, selected_tags)
def main():
# 示例1插入单个长文本
long_text = """混凝土是一种广泛使用的建筑材料,由水泥、砂、石子和水混合而成。它具有高强度、耐久性和良好的可塑性,被广泛应用于建筑、桥梁、道路等土木工程领域。
混凝土的历史可以追溯到古罗马时期当时人们使用火山灰石灰和碎石混合制成类似混凝土的材料现代混凝土技术始于19世纪随着波特兰水泥的发明而得到快速发展
混凝土的性能取决于其配合比包括水灰比砂率等参数水灰比是影响混凝土强度的关键因素较小的水灰比通常会产生更高强度的混凝土"""
insert_long_text_to_es(long_text, tags=["construction", "materials"])
# 示例2处理目录中的所有文本文件
# txt_dir = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), 'Txt')
# process_text_directory(txt_dir)
2025-08-19 07:34:39 +08:00
2025-08-19 08:14:58 +08:00
if __name__ == "__main__":
main()