You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

125 lines
4.9 KiB

2 weeks ago
import asyncio
import os
import shutil
from raganything import RAGAnything, RAGAnythingConfig
2 weeks ago
from Util.LightRagUtil import create_llm_model_func, create_embedding_func, create_vision_model_func, \
format_exam_content
2 weeks ago
import logging
# 在程序开始时添加以下配置
logging.basicConfig(
level=logging.INFO, # 设置日志级别为INFO
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
2 weeks ago
# 更详细地控制日志输出
2 weeks ago
logger = logging.getLogger('lightrag')
logger.setLevel(logging.INFO)
handler = logging.StreamHandler()
handler.setFormatter(logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s'))
logger.addHandler(handler)
async def main():
# 要处理的文件路径
file_path = "Docx/《动能定理》巩固练习.docx"
2 weeks ago
WORKING_DIR = "../Topic/WuLi"
fileName = file_path.split('/')[-1].replace(".docx", "").replace(".doc", "")
2 weeks ago
# 删除output目录下的所有文件
2 weeks ago
output_dir = "../output"
2 weeks ago
if not os.path.exists(output_dir):
os.makedirs(output_dir, exist_ok=True)
2 weeks ago
# 删除WORKING_DIR下的所有文件
shutil.rmtree(WORKING_DIR, ignore_errors=True)
os.makedirs(WORKING_DIR, exist_ok=True)
# 指定最终的索引生成目录,启动索引生成
config = RAGAnythingConfig(
working_dir=WORKING_DIR,
mineru_parse_method="auto",
enable_image_processing=True, # 处理图片
enable_table_processing=True, # 处理表格
enable_equation_processing=True, # 处理公式
)
# 自定义的大模型函数
llm_model_func = create_llm_model_func()
# 自定义的可视模型函数
vision_model_func = create_vision_model_func(llm_model_func)
# 自定义的嵌入函数
embedding_func = create_embedding_func()
rag = RAGAnything(
config=config,
llm_model_func=llm_model_func,
vision_model_func=vision_model_func,
embedding_func=embedding_func,
)
2 weeks ago
# 需要注意注释掉将整理出来的文档内容插入到LightRAG的代码。
2 weeks ago
await rag.process_document_complete(
file_path=file_path,
output_dir=output_dir,
parse_method="auto",
# MinerU特殊参数 - 支持的所有kwargs
lang="ch", # 文档语言优化(如:"ch", "en", "ja"
# device="cuda:0", # 推理设备:"cpu", "cuda", "cuda:0", "npu", "mps"
# start_page=0, # 起始页码0为基准适用于PDF
# end_page=10, # 结束页码0为基准适用于PDF
formula=True, # 启用公式解析
table=True, # 启用表格解析
backend="pipeline", # 解析后端:"pipeline", "vlm-transformers"等
source="local", # 模型源:"huggingface", "modelscope", "local"
# RAGAnything标准参数
display_stats=True, # 显示内容统计信息
split_by_character=None, # 可选的文本分割字符
doc_id=None, # 可选的文档ID
)
"""
2 weeks ago
修正一下MinerU生成的Latex中如果是数字加圆圈的样式 \textcircled{1}
无法在Typora或者PyCharm中显示的问题,改成兼容性更强的 \enclose{circle}{1}
2 weeks ago
"""
2 weeks ago
path = r'../output/' + fileName + '/auto'
finalName = path + r'/' + fileName + '.md'
2 weeks ago
with open(finalName, 'r', encoding='utf-8') as f:
content = f.read()
2 weeks ago
content = content.replace(r'\textcircled', r'\enclose{circle}')
2 weeks ago
# 按【题型】分割试题
question_types = ["不定项选择", "单选题", "多选题", "填空题", "判断题", "完型填空题", "计算题"]
# 分割试题内容
questions = []
current_question = ""
2 weeks ago
found_first_question = False
2 weeks ago
for line in content.split('\n'):
if any(line.startswith(f"【题型】 {t}") for t in question_types):
2 weeks ago
if not found_first_question:
found_first_question = True
current_question = "**" + line + "**\n" # 加粗处理
else:
if current_question:
questions.append(current_question.strip())
current_question = "**" + line + "**\n" # 加粗处理
elif found_first_question:
2 weeks ago
current_question += line + "\n"
if current_question:
questions.append(current_question.strip())
# 重新组合内容
formatted_content = "\n\n".join(questions)
2 weeks ago
with open(path + r'/测试.md' , 'w', encoding='utf-8') as f:
2 weeks ago
f.write(formatted_content)
2 weeks ago
# 将path目录下的images目录整体拷贝到 output下
2 weeks ago
shutil.rmtree(output_dir + r'/images')
2 weeks ago
shutil.copytree(path + r'/images', output_dir + r'/images')
2 weeks ago
# 删除path目录下
2 weeks ago
#shutil.rmtree(path)
2 weeks ago
2 weeks ago
2 weeks ago
if __name__ == "__main__":
asyncio.run(main())