You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

687 lines
25 KiB

4 weeks ago
import asyncio
import inspect
import json
import os
import pipmaster as pm
from dataclasses import dataclass
from typing import Any, Dict, List, final
from tenacity import (
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
from lightrag.types import KnowledgeGraph, KnowledgeGraphNode, KnowledgeGraphEdge
from lightrag.utils import logger
from ..base import BaseGraphStorage
if not pm.is_installed("gremlinpython"):
pm.install("gremlinpython")
from gremlin_python.driver import client, serializer # type: ignore
from gremlin_python.driver.aiohttp.transport import AiohttpTransport # type: ignore
from gremlin_python.driver.protocol import GremlinServerError # type: ignore
@final
@dataclass
class GremlinStorage(BaseGraphStorage):
@staticmethod
def load_nx_graph(file_name):
print("no preloading of graph with Gremlin in production")
def __init__(self, namespace, global_config, embedding_func):
super().__init__(
namespace=namespace,
global_config=global_config,
embedding_func=embedding_func,
)
self._driver = None
self._driver_lock = asyncio.Lock()
USER = os.environ.get("GREMLIN_USER", "")
PASSWORD = os.environ.get("GREMLIN_PASSWORD", "")
HOST = os.environ["GREMLIN_HOST"]
PORT = int(os.environ["GREMLIN_PORT"])
# TraversalSource, a custom one has to be created manually,
# default it "g"
SOURCE = os.environ.get("GREMLIN_TRAVERSE_SOURCE", "g")
# All vertices will have graph={GRAPH} property, so that we can
# have several logical graphs for one source
GRAPH = GremlinStorage._to_value_map(
os.environ.get("GREMLIN_GRAPH", "LightRAG")
)
self.graph_name = GRAPH
self._driver = client.Client(
f"ws://{HOST}:{PORT}/gremlin",
SOURCE,
username=USER,
password=PASSWORD,
message_serializer=serializer.GraphSONSerializersV3d0(),
transport_factory=lambda: AiohttpTransport(call_from_event_loop=True),
)
async def close(self):
if self._driver:
self._driver.close()
self._driver = None
async def __aexit__(self, exc_type, exc, tb):
if self._driver:
self._driver.close()
async def index_done_callback(self) -> None:
# Gremlin handles persistence automatically
pass
@staticmethod
def _to_value_map(value: Any) -> str:
"""Dump supported Python object as Gremlin valueMap"""
json_str = json.dumps(value, ensure_ascii=False, sort_keys=False)
parsed_str = json_str.replace("'", r"\'")
# walk over the string and replace curly brackets with square brackets
# outside of strings, as well as replace double quotes with single quotes
# and "deescape" double quotes inside of strings
outside_str = True
escaped = False
remove_indices = []
for i, c in enumerate(parsed_str):
if escaped:
# previous character was an "odd" backslash
escaped = False
if c == '"':
# we want to "deescape" double quotes: store indices to delete
remove_indices.insert(0, i - 1)
elif c == "\\":
escaped = True
elif c == '"':
outside_str = not outside_str
parsed_str = parsed_str[:i] + "'" + parsed_str[i + 1 :]
elif c == "{" and outside_str:
parsed_str = parsed_str[:i] + "[" + parsed_str[i + 1 :]
elif c == "}" and outside_str:
parsed_str = parsed_str[:i] + "]" + parsed_str[i + 1 :]
for idx in remove_indices:
parsed_str = parsed_str[:idx] + parsed_str[idx + 1 :]
return parsed_str
@staticmethod
def _convert_properties(properties: Dict[str, Any]) -> str:
"""Create chained .property() commands from properties dict"""
props = []
for k, v in properties.items():
prop_name = GremlinStorage._to_value_map(k)
props.append(f".property({prop_name}, {GremlinStorage._to_value_map(v)})")
return "".join(props)
@staticmethod
def _fix_name(name: str) -> str:
"""Strip double quotes and format as a proper field name"""
name = GremlinStorage._to_value_map(name.strip('"').replace(r"\'", "'"))
return name
async def _query(self, query: str) -> List[Dict[str, Any]]:
"""
Query the Gremlin graph
Args:
query (str): a query to be executed
Returns:
List[Dict[str, Any]]: a list of dictionaries containing the result set
"""
result = list(await asyncio.wrap_future(self._driver.submit_async(query)))
if result:
result = result[0]
return result
async def has_node(self, node_id: str) -> bool:
entity_name = GremlinStorage._fix_name(node_id)
query = f"""g
.V().has('graph', {self.graph_name})
.has('entity_name', {entity_name})
.limit(1)
.count()
.project('has_node')
.by(__.choose(__.is(gt(0)), constant(true), constant(false)))
"""
result = await self._query(query)
logger.debug(
"{%s}:query:{%s}:result:{%s}",
inspect.currentframe().f_code.co_name,
query,
result[0]["has_node"],
)
return result[0]["has_node"]
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
entity_name_source = GremlinStorage._fix_name(source_node_id)
entity_name_target = GremlinStorage._fix_name(target_node_id)
query = f"""g
.V().has('graph', {self.graph_name})
.has('entity_name', {entity_name_source})
.outE()
.inV().has('graph', {self.graph_name})
.has('entity_name', {entity_name_target})
.limit(1)
.count()
.project('has_edge')
.by(__.choose(__.is(gt(0)), constant(true), constant(false)))
"""
result = await self._query(query)
logger.debug(
"{%s}:query:{%s}:result:{%s}",
inspect.currentframe().f_code.co_name,
query,
result[0]["has_edge"],
)
return result[0]["has_edge"]
async def get_node(self, node_id: str) -> dict[str, str] | None:
entity_name = GremlinStorage._fix_name(node_id)
query = f"""g
.V().has('graph', {self.graph_name})
.has('entity_name', {entity_name})
.limit(1)
.project('properties')
.by(elementMap())
"""
result = await self._query(query)
if result:
node = result[0]
node_dict = node["properties"]
logger.debug(
"{%s}: query: {%s}, result: {%s}",
inspect.currentframe().f_code.co_name,
query.format,
node_dict,
)
return node_dict
async def node_degree(self, node_id: str) -> int:
entity_name = GremlinStorage._fix_name(node_id)
query = f"""g
.V().has('graph', {self.graph_name})
.has('entity_name', {entity_name})
.outE()
.inV().has('graph', {self.graph_name})
.count()
.project('total_edge_count')
.by()
"""
result = await self._query(query)
edge_count = result[0]["total_edge_count"]
logger.debug(
"{%s}:query:{%s}:result:{%s}",
inspect.currentframe().f_code.co_name,
query,
edge_count,
)
return edge_count
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
src_degree = await self.node_degree(src_id)
trg_degree = await self.node_degree(tgt_id)
# Convert None to 0 for addition
src_degree = 0 if src_degree is None else src_degree
trg_degree = 0 if trg_degree is None else trg_degree
degrees = int(src_degree) + int(trg_degree)
logger.debug(
"{%s}:query:src_Degree+trg_degree:result:{%s}",
inspect.currentframe().f_code.co_name,
degrees,
)
return degrees
async def get_edge(
self, source_node_id: str, target_node_id: str
) -> dict[str, str] | None:
entity_name_source = GremlinStorage._fix_name(source_node_id)
entity_name_target = GremlinStorage._fix_name(target_node_id)
query = f"""g
.V().has('graph', {self.graph_name})
.has('entity_name', {entity_name_source})
.outE()
.inV().has('graph', {self.graph_name})
.has('entity_name', {entity_name_target})
.limit(1)
.project('edge_properties')
.by(__.bothE().elementMap())
"""
result = await self._query(query)
if result:
edge_properties = result[0]["edge_properties"]
logger.debug(
"{%s}:query:{%s}:result:{%s}",
inspect.currentframe().f_code.co_name,
query,
edge_properties,
)
return edge_properties
async def get_node_edges(self, source_node_id: str) -> list[tuple[str, str]] | None:
node_name = GremlinStorage._fix_name(source_node_id)
query = f"""g
.E()
.filter(
__.or(
__.outV().has('graph', {self.graph_name})
.has('entity_name', {node_name}),
__.inV().has('graph', {self.graph_name})
.has('entity_name', {node_name})
)
)
.project('source_name', 'target_name')
.by(__.outV().values('entity_name'))
.by(__.inV().values('entity_name'))
"""
result = await self._query(query)
edges = [(res["source_name"], res["target_name"]) for res in result]
return edges
@retry(
stop=stop_after_attempt(10),
wait=wait_exponential(multiplier=1, min=4, max=10),
retry=retry_if_exception_type((GremlinServerError,)),
)
async def upsert_node(self, node_id: str, node_data: dict[str, str]) -> None:
"""
Upsert a node in the Gremlin graph.
Args:
node_id: The unique identifier for the node (used as name)
node_data: Dictionary of node properties
"""
name = GremlinStorage._fix_name(node_id)
properties = GremlinStorage._convert_properties(node_data)
query = f"""g
.V().has('graph', {self.graph_name})
.has('entity_name', {name})
.fold()
.coalesce(
__.unfold(),
__.addV('ENTITY')
.property('graph', {self.graph_name})
.property('entity_name', {name})
)
{properties}
"""
try:
await self._query(query)
logger.debug(
"Upserted node with name {%s} and properties: {%s}",
name,
properties,
)
except Exception as e:
logger.error("Error during upsert: {%s}", e)
raise
@retry(
stop=stop_after_attempt(10),
wait=wait_exponential(multiplier=1, min=4, max=10),
retry=retry_if_exception_type((GremlinServerError,)),
)
async def upsert_edge(
self, source_node_id: str, target_node_id: str, edge_data: dict[str, str]
) -> None:
"""
Upsert an edge and its properties between two nodes identified by their names.
Args:
source_node_id (str): Name of the source node (used as identifier)
target_node_id (str): Name of the target node (used as identifier)
edge_data (dict): Dictionary of properties to set on the edge
"""
source_node_name = GremlinStorage._fix_name(source_node_id)
target_node_name = GremlinStorage._fix_name(target_node_id)
edge_properties = GremlinStorage._convert_properties(edge_data)
query = f"""g
.V().has('graph', {self.graph_name})
.has('entity_name', {source_node_name}).as('source')
.V().has('graph', {self.graph_name})
.has('entity_name', {target_node_name}).as('target')
.coalesce(
__.select('source').outE('DIRECTED').where(__.inV().as('target')),
__.select('source').addE('DIRECTED').to(__.select('target'))
)
.property('graph', {self.graph_name})
{edge_properties}
"""
try:
await self._query(query)
logger.debug(
"Upserted edge from {%s} to {%s} with properties: {%s}",
source_node_name,
target_node_name,
edge_properties,
)
except Exception as e:
logger.error("Error during edge upsert: {%s}", e)
raise
async def delete_node(self, node_id: str) -> None:
"""Delete a node with the specified entity_name
Args:
node_id: The entity_name of the node to delete
"""
entity_name = GremlinStorage._fix_name(node_id)
query = f"""g
.V().has('graph', {self.graph_name})
.has('entity_name', {entity_name})
.drop()
"""
try:
await self._query(query)
logger.debug(
"{%s}: Deleted node with entity_name '%s'",
inspect.currentframe().f_code.co_name,
entity_name,
)
except Exception as e:
logger.error(f"Error during node deletion: {str(e)}")
raise
async def get_all_labels(self) -> list[str]:
"""
Get all node entity_names in the graph
Returns:
[entity_name1, entity_name2, ...] # Alphabetically sorted entity_name list
"""
query = f"""g
.V().has('graph', {self.graph_name})
.values('entity_name')
.dedup()
.order()
"""
try:
result = await self._query(query)
labels = result if result else []
logger.debug(
"{%s}: Retrieved %d labels",
inspect.currentframe().f_code.co_name,
len(labels),
)
return labels
except Exception as e:
logger.error(f"Error retrieving labels: {str(e)}")
return []
async def get_knowledge_graph(
self, node_label: str, max_depth: int = 5
) -> KnowledgeGraph:
"""
Retrieve a connected subgraph of nodes where the entity_name includes the specified `node_label`.
Maximum number of nodes is constrained by the environment variable `MAX_GRAPH_NODES` (default: 1000).
Args:
node_label: Entity name of the starting node
max_depth: Maximum depth of the subgraph
Returns:
KnowledgeGraph object containing nodes and edges
"""
result = KnowledgeGraph()
seen_nodes = set()
seen_edges = set()
# Get maximum number of graph nodes from environment variable, default is 1000
MAX_GRAPH_NODES = int(os.getenv("MAX_GRAPH_NODES", 1000))
entity_name = GremlinStorage._fix_name(node_label)
# Handle special case for "*" label
if node_label == "*":
# For "*", get all nodes and their edges (limited by MAX_GRAPH_NODES)
query = f"""g
.V().has('graph', {self.graph_name})
.limit({MAX_GRAPH_NODES})
.elementMap()
"""
nodes_result = await self._query(query)
# Add nodes to result
for node_data in nodes_result:
node_id = node_data.get("entity_name", str(node_data.get("id", "")))
if str(node_id) in seen_nodes:
continue
# Create node with properties
node_properties = {
k: v for k, v in node_data.items() if k not in ["id", "label"]
}
result.nodes.append(
KnowledgeGraphNode(
id=str(node_id),
labels=[str(node_id)],
properties=node_properties,
)
)
seen_nodes.add(str(node_id))
# Get and add edges
if nodes_result:
query = f"""g
.V().has('graph', {self.graph_name})
.limit({MAX_GRAPH_NODES})
.outE()
.inV().has('graph', {self.graph_name})
.limit({MAX_GRAPH_NODES})
.path()
.by(elementMap())
.by(elementMap())
.by(elementMap())
"""
edges_result = await self._query(query)
for path in edges_result:
if len(path) >= 3: # source -> edge -> target
source = path[0]
edge_data = path[1]
target = path[2]
source_id = source.get("entity_name", str(source.get("id", "")))
target_id = target.get("entity_name", str(target.get("id", "")))
edge_id = f"{source_id}-{target_id}"
if edge_id in seen_edges:
continue
# Create edge with properties
edge_properties = {
k: v
for k, v in edge_data.items()
if k not in ["id", "label"]
}
result.edges.append(
KnowledgeGraphEdge(
id=edge_id,
type="DIRECTED",
source=str(source_id),
target=str(target_id),
properties=edge_properties,
)
)
seen_edges.add(edge_id)
else:
# Search for specific node and get its neighborhood
query = f"""g
.V().has('graph', {self.graph_name})
.has('entity_name', {entity_name})
.repeat(__.both().simplePath().dedup())
.times({max_depth})
.emit()
.dedup()
.limit({MAX_GRAPH_NODES})
.elementMap()
"""
nodes_result = await self._query(query)
# Add nodes to result
for node_data in nodes_result:
node_id = node_data.get("entity_name", str(node_data.get("id", "")))
if str(node_id) in seen_nodes:
continue
# Create node with properties
node_properties = {
k: v for k, v in node_data.items() if k not in ["id", "label"]
}
result.nodes.append(
KnowledgeGraphNode(
id=str(node_id),
labels=[str(node_id)],
properties=node_properties,
)
)
seen_nodes.add(str(node_id))
# Get edges between the nodes in the result
if nodes_result:
node_ids = [
n.get("entity_name", str(n.get("id", ""))) for n in nodes_result
]
node_ids_query = ", ".join(
[GremlinStorage._to_value_map(nid) for nid in node_ids]
)
query = f"""g
.V().has('graph', {self.graph_name})
.has('entity_name', within({node_ids_query}))
.outE()
.where(inV().has('graph', {self.graph_name})
.has('entity_name', within({node_ids_query})))
.path()
.by(elementMap())
.by(elementMap())
.by(elementMap())
"""
edges_result = await self._query(query)
for path in edges_result:
if len(path) >= 3: # source -> edge -> target
source = path[0]
edge_data = path[1]
target = path[2]
source_id = source.get("entity_name", str(source.get("id", "")))
target_id = target.get("entity_name", str(target.get("id", "")))
edge_id = f"{source_id}-{target_id}"
if edge_id in seen_edges:
continue
# Create edge with properties
edge_properties = {
k: v
for k, v in edge_data.items()
if k not in ["id", "label"]
}
result.edges.append(
KnowledgeGraphEdge(
id=edge_id,
type="DIRECTED",
source=str(source_id),
target=str(target_id),
properties=edge_properties,
)
)
seen_edges.add(edge_id)
logger.info(
"Subgraph query successful | Node count: %d | Edge count: %d",
len(result.nodes),
len(result.edges),
)
return result
async def remove_nodes(self, nodes: list[str]):
"""Delete multiple nodes
Args:
nodes: List of node entity_names to be deleted
"""
for node in nodes:
await self.delete_node(node)
async def remove_edges(self, edges: list[tuple[str, str]]):
"""Delete multiple edges
Args:
edges: List of edges to be deleted, each edge is a (source, target) tuple
"""
for source, target in edges:
entity_name_source = GremlinStorage._fix_name(source)
entity_name_target = GremlinStorage._fix_name(target)
query = f"""g
.V().has('graph', {self.graph_name})
.has('entity_name', {entity_name_source})
.outE()
.where(inV().has('graph', {self.graph_name})
.has('entity_name', {entity_name_target}))
.drop()
"""
try:
await self._query(query)
logger.debug(
"{%s}: Deleted edge from '%s' to '%s'",
inspect.currentframe().f_code.co_name,
entity_name_source,
entity_name_target,
)
except Exception as e:
logger.error(f"Error during edge deletion: {str(e)}")
raise
async def drop(self) -> dict[str, str]:
"""Drop the storage by removing all nodes and relationships in the graph.
This function deletes all nodes with the specified graph name property,
which automatically removes all associated edges.
Returns:
dict[str, str]: Status of the operation with keys 'status' and 'message'
"""
try:
query = f"""g
.V().has('graph', {self.graph_name})
.drop()
"""
await self._query(query)
logger.info(f"Successfully dropped all data from graph {self.graph_name}")
return {"status": "success", "message": "graph data dropped"}
except Exception as e:
logger.error(f"Error dropping graph {self.graph_name}: {e}")
return {"status": "error", "message": str(e)}