126 lines
4.7 KiB
Python
126 lines
4.7 KiB
Python
|
# pip install pydantic requests
|
|||
|
from langchain_core.documents import Document
|
|||
|
from langchain_core.vectorstores import InMemoryVectorStore
|
|||
|
from langchain_openai import OpenAIEmbeddings
|
|||
|
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
|||
|
from pydantic import SecretStr
|
|||
|
import requests
|
|||
|
import json
|
|||
|
from Config.Config import (
|
|||
|
EMBED_MODEL_NAME, EMBED_BASE_URL, EMBED_API_KEY,
|
|||
|
RERANK_MODEL, RERANK_BASE_URL, RERANK_BINDING_API_KEY
|
|||
|
)
|
|||
|
|
|||
|
|
|||
|
class VectorDBUtil:
|
|||
|
"""向量数据库工具类,提供文本向量化存储和查询功能"""
|
|||
|
|
|||
|
def __init__(self):
|
|||
|
"""初始化向量数据库工具"""
|
|||
|
# 初始化嵌入模型
|
|||
|
self.embeddings = OpenAIEmbeddings(
|
|||
|
model=EMBED_MODEL_NAME,
|
|||
|
base_url=EMBED_BASE_URL,
|
|||
|
api_key=SecretStr(EMBED_API_KEY) # 包装成 SecretStr 类型
|
|||
|
)
|
|||
|
# 初始化向量存储
|
|||
|
self.vector_store = None
|
|||
|
|
|||
|
def text_to_vector_db(self, text: str, chunk_size: int = 200, chunk_overlap: int = 0) -> tuple:
|
|||
|
"""
|
|||
|
将文本存入向量数据库
|
|||
|
|
|||
|
参数:
|
|||
|
text: 要入库的文本
|
|||
|
chunk_size: 文本分割块大小
|
|||
|
chunk_overlap: 文本块重叠大小
|
|||
|
|
|||
|
返回:
|
|||
|
tuple: (向量存储对象, 文档数量, 分割后的文档块数量)
|
|||
|
"""
|
|||
|
# 创建文档对象
|
|||
|
docs = [Document(page_content=text, metadata={"source": "simulated_document"})]
|
|||
|
doc_count = len(docs)
|
|||
|
print(f"文档数量:{doc_count} 个")
|
|||
|
|
|||
|
# 切割文档
|
|||
|
text_splitter = RecursiveCharacterTextSplitter(
|
|||
|
chunk_size=chunk_size, chunk_overlap=chunk_overlap, add_start_index=True
|
|||
|
)
|
|||
|
all_splits = text_splitter.split_documents(docs)
|
|||
|
split_count = len(all_splits)
|
|||
|
print(f"切割后的文档块数量:{split_count}")
|
|||
|
|
|||
|
# 向量存储
|
|||
|
self.vector_store = InMemoryVectorStore(self.embeddings)
|
|||
|
ids = self.vector_store.add_documents(documents=all_splits)
|
|||
|
|
|||
|
return self.vector_store, doc_count, split_count
|
|||
|
|
|||
|
def query_vector_db(self, query: str, k: int = 4) -> list:
|
|||
|
"""
|
|||
|
从向量数据库查询文本
|
|||
|
|
|||
|
参数:
|
|||
|
query: 查询字符串
|
|||
|
k: 要返回的结果数量
|
|||
|
|
|||
|
返回:
|
|||
|
list: 重排后的结果列表,每个元素是(文档对象, 可信度分数)的元组
|
|||
|
"""
|
|||
|
if not self.vector_store:
|
|||
|
print("错误: 向量数据库未初始化,请先调用text_to_vector_db方法")
|
|||
|
return []
|
|||
|
|
|||
|
# 向量查询 - 获取更多结果用于重排
|
|||
|
results = self.vector_store.similarity_search(query, k=k)
|
|||
|
print(f"向量搜索结果数量:{len(results)}")
|
|||
|
|
|||
|
# 存储重排后的文档和分数
|
|||
|
reranked_docs_with_scores = []
|
|||
|
|
|||
|
# 调用重排模型
|
|||
|
if len(results) > 1:
|
|||
|
# 准备重排请求数据
|
|||
|
rerank_data = {
|
|||
|
"model": RERANK_MODEL,
|
|||
|
"query": query,
|
|||
|
"documents": [doc.page_content for doc in results],
|
|||
|
"top_n": len(results)
|
|||
|
}
|
|||
|
|
|||
|
# 调用SiliconFlow API进行重排
|
|||
|
headers = {
|
|||
|
"Content-Type": "application/json",
|
|||
|
"Authorization": f"Bearer {RERANK_BINDING_API_KEY}"
|
|||
|
}
|
|||
|
|
|||
|
try:
|
|||
|
response = requests.post(RERANK_BASE_URL, headers=headers, data=json.dumps(rerank_data))
|
|||
|
response.raise_for_status() # 检查请求是否成功
|
|||
|
rerank_result = response.json()
|
|||
|
|
|||
|
# 处理重排结果,提取relevance_score
|
|||
|
if "results" in rerank_result:
|
|||
|
for item in rerank_result["results"]:
|
|||
|
doc_idx = item.get("index")
|
|||
|
score = item.get("relevance_score", 0.0)
|
|||
|
if 0 <= doc_idx < len(results):
|
|||
|
reranked_docs_with_scores.append((results[doc_idx], score))
|
|||
|
else:
|
|||
|
print("警告: 无法识别重排API响应格式")
|
|||
|
reranked_docs_with_scores = [(doc, 0.0) for doc in results]
|
|||
|
|
|||
|
print(f"重排后结果数量:{len(reranked_docs_with_scores)}")
|
|||
|
except Exception as e:
|
|||
|
print(f"重排模型调用失败: {e}")
|
|||
|
print("将使用原始搜索结果")
|
|||
|
reranked_docs_with_scores = [(doc, 0.0) for doc in results]
|
|||
|
else:
|
|||
|
# 只有一个结果,无需重排
|
|||
|
reranked_docs_with_scores = [(doc, 1.0) for doc in results] # 单个结果可信度设为1.0
|
|||
|
|
|||
|
return reranked_docs_with_scores
|
|||
|
|
|||
|
|