129 lines
4.9 KiB
Python
129 lines
4.9 KiB
Python
import json
|
||
|
||
from pyecharts import options as opts
|
||
from pyecharts.charts import Bar, Line
|
||
from pyecharts.globals import CurrentConfig
|
||
|
||
from Config.Config import ONLINE_HOST
|
||
CurrentConfig.ONLINE_HOST = ONLINE_HOST
|
||
|
||
class RenkouModel:
|
||
@staticmethod
|
||
def load_population_data():
|
||
try:
|
||
# 获取当前文件所在目录的父目录,然后找到Data文件夹
|
||
data_path = "./Data/RenKou.json"
|
||
|
||
with open(data_path, "r", encoding="utf-8") as f:
|
||
data = json.load(f)
|
||
return data
|
||
except Exception as e:
|
||
print(f"读取人口数据出错: {e}")
|
||
return []
|
||
|
||
@staticmethod
|
||
def generate_population_chart_config(year="2024"):
|
||
# 加载人口数据
|
||
population_data = RenkouModel.load_population_data()
|
||
# 筛选出州市级数据
|
||
cities = [item for item in population_data if len(item["area_code"]) == 9 and item["area_code"].endswith("000") and item["area_code"][4:6] == "00" and item["area_code"][2:8] != "000000"]
|
||
# 提取城市名称和人口数据
|
||
city_names = [city["area_name"] for city in cities]
|
||
total_populations = [city["total_population"].get(year, 0) for city in cities]
|
||
urban_populations = [city["urban_population"].get(year, 0) for city in cities]
|
||
rural_populations = [city["rural_population"].get(year, 0) for city in cities]
|
||
|
||
# 创建柱状图
|
||
c = (
|
||
Bar()
|
||
.add_xaxis(city_names)
|
||
.add_yaxis("总人口", total_populations, stack="stack1")
|
||
.add_yaxis("城镇人口", urban_populations, stack="stack1")
|
||
.add_yaxis("农村人口", rural_populations, stack="stack1")
|
||
.set_global_opts(
|
||
title_opts=opts.TitleOpts(
|
||
title=f"云南省各州市人口分布图({year}年)",
|
||
pos_top="1%",
|
||
pos_left="center"
|
||
),
|
||
tooltip_opts=opts.TooltipOpts(
|
||
trigger="axis",
|
||
axis_pointer_type="shadow"
|
||
),
|
||
legend_opts=opts.LegendOpts(
|
||
pos_top="8%",
|
||
pos_right="5%"
|
||
),
|
||
datazoom_opts=[opts.DataZoomOpts()],
|
||
xaxis_opts=opts.AxisOpts(
|
||
axislabel_opts=opts.LabelOpts(rotate=45)
|
||
),
|
||
yaxis_opts=opts.AxisOpts(
|
||
name="人口数量(万人)",
|
||
name_location="middle",
|
||
name_gap=40
|
||
)
|
||
)
|
||
.set_series_opts(
|
||
label_opts=opts.LabelOpts(is_show=False),
|
||
markline_opts=opts.MarkLineOpts(
|
||
data=[opts.MarkLineItem(type_="average", name="平均值")]
|
||
)
|
||
)
|
||
)
|
||
|
||
# 获取图表的选项配置
|
||
options_str = c.dump_options_with_quotes()
|
||
return json.loads(options_str)
|
||
|
||
@staticmethod
|
||
def generate_urbanization_rate_chart_config():
|
||
# 加载人口数据
|
||
population_data = RenkouModel.load_population_data()
|
||
|
||
# 筛选出州市级数据
|
||
cities = [item for item in population_data if len(item["area_code"]) == 9 and item["area_code"].endswith("000") and item["area_code"][4:6] == "00" and item["area_code"][2:8] != "000000"]
|
||
|
||
# 提取城市名称
|
||
city_names = [city["area_name"] for city in cities]
|
||
|
||
# 创建折线图
|
||
line = (
|
||
Line()
|
||
.add_xaxis(city_names)
|
||
)
|
||
|
||
# 添加各年份的城镇化率数据
|
||
years = ["2020", "2021", "2022", "2023", "2024"]
|
||
for year in years:
|
||
urbanization_rates = [city["urbanization_rate"].get(year, 0) for city in cities]
|
||
line.add_yaxis(f"{year}年", urbanization_rates,
|
||
markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(type_="max")]))
|
||
|
||
line.set_global_opts(
|
||
title_opts=opts.TitleOpts(
|
||
title="云南省各州市城镇化率变化趋势",
|
||
pos_top="1%",
|
||
pos_left="center"
|
||
),
|
||
tooltip_opts=opts.TooltipOpts(trigger="axis"),
|
||
legend_opts=opts.LegendOpts(
|
||
pos_top="8%",
|
||
pos_right="5%"
|
||
),
|
||
datazoom_opts=[opts.DataZoomOpts()],
|
||
xaxis_opts=opts.AxisOpts(
|
||
axislabel_opts=opts.LabelOpts(rotate=45)
|
||
),
|
||
yaxis_opts=opts.AxisOpts(
|
||
name="城镇化率(%)",
|
||
name_location="middle",
|
||
name_gap=40,
|
||
min_=0,
|
||
max_=100
|
||
)
|
||
)
|
||
|
||
# 获取图表的选项配置
|
||
options_str = line.dump_options_with_quotes()
|
||
return json.loads(options_str) |