214 lines
7.4 KiB
Python
214 lines
7.4 KiB
Python
from fastapi import APIRouter
|
||
import pyecharts
|
||
from pyecharts import options as opts
|
||
from pyecharts.charts import Bar, Line
|
||
from pyecharts.faker import Faker
|
||
from pyecharts.globals import CurrentConfig
|
||
import json
|
||
import os
|
||
|
||
# 创建 APIRouter 实例
|
||
router = APIRouter(prefix="/bigscreen", tags=["大屏展示"])
|
||
|
||
# 配置使用自定义的 ECharts 路径
|
||
CurrentConfig.ONLINE_HOST = "https://gcore.jsdelivr.net/npm/echarts@6.0.0/dist/"
|
||
|
||
# 定义一个 helloWorld 路由
|
||
@router.get("/")
|
||
async def root():
|
||
return {"message": "Welcome to YunNan Education World!"}
|
||
|
||
# 生成图表配置的函数
|
||
def generate_bar_chart_config():
|
||
c = (
|
||
Bar()
|
||
.add_xaxis(Faker.choose())
|
||
.add_yaxis("商家A", Faker.values())
|
||
.add_yaxis("商家B", Faker.values())
|
||
.set_global_opts(title_opts=opts.TitleOpts(title="Bar-MarkLine(自定义)"))
|
||
.set_series_opts(
|
||
label_opts=opts.LabelOpts(is_show=False),
|
||
markline_opts=opts.MarkLineOpts(
|
||
data=[opts.MarkLineItem(y=50, name="yAxis=50")]
|
||
),
|
||
)
|
||
)
|
||
|
||
# 获取图表的选项配置,使用 dump_options_with_quotes 方法获取可以直接序列化的选项
|
||
options_str = c.dump_options_with_quotes()
|
||
|
||
# 将字符串转换为 JSON 对象
|
||
options_json = json.loads(options_str)
|
||
|
||
return options_json
|
||
|
||
# 定义一个返回图表配置的路由
|
||
@router.get("/chart/bar")
|
||
async def get_bar_chart_config():
|
||
"""
|
||
获取柱状图配置
|
||
"""
|
||
chart_config = generate_bar_chart_config()
|
||
return chart_config
|
||
|
||
# 读取人口数据
|
||
def load_population_data():
|
||
try:
|
||
# 获取当前文件所在目录的父目录,然后找到Data文件夹
|
||
current_dir = os.path.dirname(os.path.abspath(__file__))
|
||
project_root = os.path.dirname(current_dir)
|
||
data_path = os.path.join(project_root, "Data", "RenKou.json")
|
||
|
||
with open(data_path, "r", encoding="utf-8") as f:
|
||
data = json.load(f)
|
||
return data
|
||
except Exception as e:
|
||
print(f"读取人口数据出错: {e}")
|
||
return []
|
||
|
||
# 生成人口数据图表配置
|
||
def generate_population_chart_config(year="2024"):
|
||
# 加载人口数据
|
||
population_data = load_population_data()
|
||
|
||
# 筛选出州市级数据(排除县级数据)
|
||
# 正确的格式是9位数字,以000结尾且第5-6位为00(表示州市级)
|
||
cities = [item for item in population_data if len(item["area_code"]) == 9 and item["area_code"].endswith("000") and item["area_code"][4:6] == "00"]
|
||
|
||
# 提取城市名称和人口数据
|
||
city_names = [city["area_name"] for city in cities]
|
||
total_populations = [city["total_population"].get(year, 0) for city in cities]
|
||
urban_populations = [city["urban_population"].get(year, 0) for city in cities]
|
||
rural_populations = [city["rural_population"].get(year, 0) for city in cities]
|
||
|
||
# 创建柱状图
|
||
c = (
|
||
Bar()
|
||
.add_xaxis(city_names)
|
||
.add_yaxis("总人口", total_populations, stack="stack1")
|
||
.add_yaxis("城镇人口", urban_populations, stack="stack1")
|
||
.add_yaxis("农村人口", rural_populations, stack="stack1")
|
||
.set_global_opts(
|
||
title_opts=opts.TitleOpts(
|
||
title=f"云南省各州市人口分布图({year}年)",
|
||
pos_top="1%", # 调整标题位置到顶部1%
|
||
pos_left="center"
|
||
),
|
||
tooltip_opts=opts.TooltipOpts(
|
||
trigger="axis",
|
||
axis_pointer_type="shadow"
|
||
),
|
||
legend_opts=opts.LegendOpts(
|
||
pos_top="8%", # 调整图例位置到标题下方
|
||
pos_right="5%"
|
||
),
|
||
datazoom_opts=[opts.DataZoomOpts()],
|
||
xaxis_opts=opts.AxisOpts(
|
||
axislabel_opts=opts.LabelOpts(rotate=45)
|
||
),
|
||
yaxis_opts=opts.AxisOpts(
|
||
name="人口数量(万人)",
|
||
name_location="middle",
|
||
name_gap=40
|
||
)
|
||
)
|
||
.set_series_opts(
|
||
label_opts=opts.LabelOpts(is_show=False),
|
||
markline_opts=opts.MarkLineOpts(
|
||
data=[opts.MarkLineItem(type_="average", name="平均值")]
|
||
)
|
||
)
|
||
)
|
||
|
||
# 获取图表的选项配置
|
||
options_str = c.dump_options_with_quotes()
|
||
|
||
# 将字符串转换为 JSON 对象
|
||
options_json = json.loads(options_str)
|
||
|
||
return options_json
|
||
|
||
# 生成城镇化率图表配置
|
||
def generate_urbanization_rate_chart_config():
|
||
# 加载人口数据
|
||
population_data = load_population_data()
|
||
|
||
# 筛选出州市级数据(排除县级数据)
|
||
# 排除省级数据(如云南省530000000)和县级数据,只保留州市级数据
|
||
cities = [item for item in population_data if len(item["area_code"]) == 9 and item["area_code"].endswith("000") and item["area_code"][4:6] == "00" and item["area_code"][2:8] != "000000"]
|
||
|
||
# 提取城市名称和城镇化率数据
|
||
city_names = [city["area_name"] for city in cities]
|
||
|
||
# 创建折线图
|
||
line = (
|
||
Line()
|
||
.add_xaxis(city_names)
|
||
)
|
||
|
||
# 添加各年份的城镇化率数据
|
||
years = ["2020", "2021", "2022", "2023", "2024"]
|
||
for year in years:
|
||
urbanization_rates = [city["urbanization_rate"].get(year, 0) for city in cities]
|
||
line.add_yaxis(f"{year}年", urbanization_rates,
|
||
markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(type_="max")]))
|
||
|
||
line.set_global_opts(
|
||
title_opts=opts.TitleOpts(
|
||
title="云南省各州市城镇化率变化趋势",
|
||
pos_top="1%", # 调整标题位置到顶部1%
|
||
pos_left="center"
|
||
),
|
||
tooltip_opts=opts.TooltipOpts(trigger="axis"),
|
||
legend_opts=opts.LegendOpts(
|
||
pos_top="8%", # 调整图例位置到标题下方
|
||
pos_right="5%"
|
||
),
|
||
datazoom_opts=[opts.DataZoomOpts()],
|
||
xaxis_opts=opts.AxisOpts(
|
||
axislabel_opts=opts.LabelOpts(rotate=45)
|
||
),
|
||
yaxis_opts=opts.AxisOpts(
|
||
name="城镇化率(%)",
|
||
name_location="middle",
|
||
name_gap=40,
|
||
min_=0,
|
||
max_=100
|
||
)
|
||
)
|
||
|
||
# 获取图表的选项配置
|
||
options_str = line.dump_options_with_quotes()
|
||
|
||
# 将字符串转换为 JSON 对象
|
||
options_json = json.loads(options_str)
|
||
|
||
return options_json
|
||
|
||
# 定义一个返回人口数据图表配置的路由
|
||
@router.get("/population/chart/{year}")
|
||
async def get_population_chart_config(year: str = "2024"):
|
||
"""
|
||
获取人口数据图表配置
|
||
"""
|
||
chart_config = generate_population_chart_config(year)
|
||
return chart_config
|
||
|
||
# 定义一个返回城镇化率图表配置的路由
|
||
@router.get("/population/urbanization")
|
||
async def get_urbanization_rate_chart_config():
|
||
"""
|
||
获取城镇化率图表配置
|
||
"""
|
||
chart_config = generate_urbanization_rate_chart_config()
|
||
return chart_config
|
||
|
||
# 定义一个返回人口数据原始数据的路由
|
||
@router.get("/population/data")
|
||
async def get_population_data():
|
||
"""
|
||
获取人口数据原始数据
|
||
"""
|
||
population_data = load_population_data()
|
||
return {"data": population_data}
|