import os import json import traceback from typing import List, Dict, Any, Tuple from openpyxl.utils import column_index_from_string from openpyxl.workbook import Workbook from openpyxl.worksheet.worksheet import Worksheet from Config.Config import EXCEL_PATH from Util.AreaUtil import query_area_info from Util.DataUtil import ( init_directories, process_value, print_conversion_stats, convert_area_name, save_to_json, load_workbook_sheet ) # ======================== 配置常量 ======================== # # 数据目录和JSON路径 DATA_DIR = os.path.join(os.path.dirname(os.path.dirname(__file__)), 'Data') JSON_PATH = os.path.join(DATA_DIR, 'ZaiXiaoShengCount.json') # 工作表名称 SHEET_NAME = '在校生数' # 区域名称所在列 REGION_NAME_COLUMN = 'B' # 数据起始行 START_ROW = 4 # 年份范围 YEAR_RANGE = range(2015, 2025) # 教育阶段配置 - 在校生数(2015-2024年) EDUCATION_STAGES = [ { 'name': 'preschool', 'chinese_name': '学前教育', 'columns': [ {'year': 2015, 'urban': 'D', 'town': 'E', 'rural': 'F', 'total': 'G'}, {'year': 2016, 'urban': 'H', 'town': 'I', 'rural': 'J', 'total': 'K'}, {'year': 2017, 'urban': 'L', 'town': 'M', 'rural': 'N', 'total': 'O'}, {'year': 2018, 'urban': 'P', 'town': 'Q', 'rural': 'R', 'total': 'S'}, {'year': 2019, 'urban': 'T', 'town': 'U', 'rural': 'V', 'total': 'W'}, {'year': 2020, 'urban': 'X', 'town': 'Y', 'rural': 'Z', 'total': 'AA'}, {'year': 2021, 'urban': 'AB', 'town': 'AC', 'rural': 'AD', 'total': 'AE'}, {'year': 2022, 'urban': 'AF', 'town': 'AG', 'rural': 'AH', 'total': 'AI'}, {'year': 2023, 'urban': 'AJ', 'town': 'AK', 'rural': 'AL', 'total': 'AM'}, {'year': 2024, 'urban': 'AN', 'town': 'AO', 'rural': 'AP', 'total': 'AQ'} ] }, { 'name': 'primary', 'chinese_name': '小学教育', 'columns': [ {'year': 2015, 'urban': 'AR', 'town': 'AS', 'rural': 'AT', 'total': 'AU'}, {'year': 2016, 'urban': 'AV', 'town': 'AW', 'rural': 'AX', 'total': 'AY'}, {'year': 2017, 'urban': 'AZ', 'town': 'BA', 'rural': 'BB', 'total': 'BC'}, {'year': 2018, 'urban': 'BD', 'town': 'BE', 'rural': 'BF', 'total': 'BG'}, {'year': 2019, 'urban': 'BH', 'town': 'BI', 'rural': 'BJ', 'total': 'BK'}, {'year': 2020, 'urban': 'BL', 'town': 'BM', 'rural': 'BN', 'total': 'BO'}, {'year': 2021, 'urban': 'BP', 'town': 'BQ', 'rural': 'BR', 'total': 'BS'}, {'year': 2022, 'urban': 'BT', 'town': 'BU', 'rural': 'BV', 'total': 'BW'}, {'year': 2023, 'urban': 'BX', 'town': 'BY', 'rural': 'BZ', 'total': 'CA'}, {'year': 2024, 'urban': 'CB', 'town': 'CC', 'rural': 'CD', 'total': 'CE'} ] }, { 'name': 'junior', 'chinese_name': '初中教育', 'columns': [ {'year': 2015, 'urban': 'CF', 'town': 'CG', 'rural': 'CH', 'total': 'CI'}, {'year': 2016, 'urban': 'CJ', 'town': 'CK', 'rural': 'CL', 'total': 'CM'}, {'year': 2017, 'urban': 'CN', 'town': 'CO', 'rural': 'CP', 'total': 'CQ'}, {'year': 2018, 'urban': 'CR', 'town': 'CS', 'rural': 'CT', 'total': 'CU'}, {'year': 2019, 'urban': 'CV', 'town': 'CW', 'rural': 'CX', 'total': 'CY'}, {'year': 2020, 'urban': 'CZ', 'town': 'DA', 'rural': 'DB', 'total': 'DC'}, {'year': 2021, 'urban': 'DD', 'town': 'DE', 'rural': 'DF', 'total': 'DG'}, {'year': 2022, 'urban': 'DH', 'town': 'DI', 'rural': 'DJ', 'total': 'DK'}, {'year': 2023, 'urban': 'DL', 'town': 'DM', 'rural': 'DN', 'total': 'DO'}, {'year': 2024, 'urban': 'DP', 'town': 'DQ', 'rural': 'DR', 'total': 'DS'} ] }, { 'name': 'senior', 'chinese_name': '高中教育', 'columns': [ {'year': 2015, 'urban': 'DT', 'town': 'DU', 'rural': 'DV', 'total': 'DW'}, {'year': 2016, 'urban': 'DX', 'town': 'DY', 'rural': 'DZ', 'total': 'EA'}, {'year': 2017, 'urban': 'EB', 'town': 'EC', 'rural': 'ED', 'total': 'EE'}, {'year': 2018, 'urban': 'EF', 'town': 'EG', 'rural': 'EH', 'total': 'EI'}, {'year': 2019, 'urban': 'EJ', 'town': 'EK', 'rural': 'EL', 'total': 'EM'}, {'year': 2020, 'urban': 'EN', 'town': 'EO', 'rural': 'EP', 'total': 'EQ'}, {'year': 2021, 'urban': 'ER', 'town': 'ES', 'rural': 'ET', 'total': 'EU'}, {'year': 2022, 'urban': 'EV', 'town': 'EW', 'rural': 'EX', 'total': 'EY'}, {'year': 2023, 'urban': 'EZ', 'town': 'FA', 'rural': 'FB', 'total': 'FC'}, {'year': 2024, 'urban': 'FD', 'town': 'FE', 'rural': 'FF', 'total': 'FG'} ] }, { 'name': 'vocational', 'chinese_name': '中职教育', 'columns': [ {'year': 2015, 'total': 'FH'}, {'year': 2016, 'total': 'FI'}, {'year': 2017, 'total': 'FJ'}, {'year': 2018, 'total': 'FK'}, {'year': 2019, 'total': 'FL'}, {'year': 2020, 'total': 'FM'}, {'year': 2021, 'total': 'FN'}, {'year': 2022, 'total': 'FO'}, {'year': 2023, 'total': 'FP'}, {'year': 2024, 'total': 'FQ'} ] } ] # ======================== 核心逻辑 ======================== # def extract_stage_data(row: Tuple[Any, ...], stage: Dict[str, Any]) -> Dict[str, Dict[str, int]]: """ 提取单个教育阶段的在校生数据 :param row: Excel行数据 :param stage: 教育阶段配置 :return: 格式化的阶段数据 """ stage_data = {} for year_config in stage['columns']: year = year_config['year'] year_data = {} # 处理多类别教育阶段(学前到高中) if 'urban' in year_config: # 城区 urban_col = column_index_from_string(year_config['urban']) - 1 urban_val = row[urban_col] if len(row) > urban_col else None year_data['urban'] = process_value(urban_val) # 镇区 town_col = column_index_from_string(year_config['town']) - 1 town_val = row[town_col] if len(row) > town_col else None year_data['town'] = process_value(town_val) # 乡村 rural_col = column_index_from_string(year_config['rural']) - 1 rural_val = row[rural_col] if len(row) > rural_col else None year_data['rural'] = process_value(rural_val) # 总计 total_col = column_index_from_string(year_config['total']) - 1 total_val = row[total_col] if len(row) > total_col else None year_data['total'] = process_value(total_val) # 处理中职教育(单值) else: total_col = column_index_from_string(year_config['total']) - 1 total_val = row[total_col] if len(row) > total_col else None year_data['total'] = process_value(total_val) stage_data[str(year)] = year_data return stage_data # 修改函数定义,更新返回类型注解为4个值 def extract_student_data(sheet: Worksheet) -> Tuple[List[Dict[str, Any]], List[str], List[str], int]: """ 提取所有区域的在校生数据 :param sheet: Excel工作表对象 :return: 在校生数据列表、转换错误列表、处理总数 """ student_data = [] name_conversion_errors = [] conversion_records = [] processed_count = 0 region_col_index = column_index_from_string(REGION_NAME_COLUMN) - 1 print(f"✅ 开始处理在校生数数据,共{sheet.max_row}行数据") # 遍历行数据 for row_idx, row in enumerate(sheet.iter_rows(values_only=True), start=1): # 跳过表头行 if row_idx < START_ROW: continue try: # 检查行是否有足够的列 if len(row) <= region_col_index: print(f"⚠️ 第{row_idx}行数据不足,跳过") continue # 提取区域名称 raw_name = row[region_col_index] # 修复:接收四个返回值并合并结果 area_name, area_code, new_conversion, new_errors = convert_area_name(raw_name, row_idx) conversion_records.extend(new_conversion) name_conversion_errors.extend(new_errors) is_valid = len(new_errors) == 0 # 记录转换结果 if is_valid: # 将字符串记录改为字典格式 conversion_records.append({ 'row': row_idx, 'raw_name': raw_name, 'converted_name': area_name, 'status': 'success' }) processed_count += 1 else: error_msg = f"第{row_idx}行: {raw_name}" name_conversion_errors.append(error_msg) # 将字符串记录改为字典格式 conversion_records.append({ 'row': row_idx, 'raw_name': raw_name, 'converted_name': None, 'status': 'error' }) continue # 创建区域数据对象 area_data = { 'area_name': area_name, 'area_code': area_code, 'raw_name': str(raw_name).strip(), 'student_data': {} } # 提取各教育阶段数据 for stage in EDUCATION_STAGES: stage_name = stage['name'] area_data['student_data'][stage_name] = extract_stage_data(row, stage) student_data.append(area_data) # 进度提示 if processed_count % 10 == 0 and processed_count > 0: print(f"🔄 已处理{processed_count}条数据...") except Exception as e: print(f"🔴 处理第{row_idx}行时发生错误:{str(e)}") continue # 修改return语句,添加name_conversion_errors返回值 return student_data, conversion_records, name_conversion_errors, processed_count def main() -> None: """主函数:执行在校生数数据处理流程""" try: # 初始化目录 init_directories(DATA_DIR) # 修复:移除列表括号,直接传入路径字符串 # 加载Excel工作表 sheet = load_workbook_sheet(EXCEL_PATH, SHEET_NAME) if not sheet: print(f"❌ 错误:未找到'{SHEET_NAME}'工作表") return # 提取数据 # 修复:调整返回值顺序,获取转换记录列表 student_data, conversion_records, name_conversion_errors, processed_count = extract_student_data(sheet) # 保存数据到JSON save_to_json(student_data, JSON_PATH) # 打印转换统计 # 修复:传入转换记录列表而非处理数量 print_conversion_stats(conversion_records, name_conversion_errors) print(f"💾 数据已保存至 {JSON_PATH}") except FileNotFoundError: print(f"🔴 错误:Excel文件 '{EXCEL_PATH}' 不存在") except Exception as e: print(f"🔴 处理数据时发生错误:{str(e)}{traceback.format_exc()}") if __name__ == "__main__": main()