'commit'
This commit is contained in:
40
Config/BaseConfig.py
Normal file
40
Config/BaseConfig.py
Normal file
@@ -0,0 +1,40 @@
|
||||
import os
|
||||
from datetime import datetime
|
||||
|
||||
class BaseConfig:
|
||||
def __init__(self):
|
||||
# 基础路径配置
|
||||
self.root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
||||
self.data_dir = os.path.join(self.root_dir, 'Data')
|
||||
self.excel_path = os.path.join(self.root_dir, 'Doc', '数据库-2015-2024-v2.xlsx')
|
||||
self.json_output_suffix = '.json'
|
||||
self.start_row = 5 # 有效数据起始行
|
||||
|
||||
# 年份范围配置
|
||||
self.years = [str(year) for year in range(2015, 2025)]
|
||||
|
||||
# 教育阶段通用配置
|
||||
self.education_stages = {
|
||||
'preschool': '学前教育',
|
||||
'primary': '小学教育',
|
||||
'junior': '初中教育',
|
||||
'senior': '高中教育',
|
||||
'vocational': '中职教育'
|
||||
}
|
||||
|
||||
def get_output_path(self, filename):
|
||||
"""获取JSON输出路径"""
|
||||
return os.path.join(self.data_dir, f'{filename}{self.json_output_suffix}')
|
||||
|
||||
def get_log_path(self):
|
||||
"""获取日志文件路径"""
|
||||
log_dir = os.path.join(self.root_dir, 'Log')
|
||||
os.makedirs(log_dir, exist_ok=True)
|
||||
return os.path.join(log_dir, f'{datetime.now().strftime("%Y%m%d")}.log')
|
||||
|
||||
# 工作表名称配置
|
||||
SHEET_NAMES = {
|
||||
'population': '人口', # 修改为实际名称
|
||||
'enrollment_rate': '毛入学率', # 其他工作表名称
|
||||
'school_count': '学校数'
|
||||
}
|
BIN
Config/__pycache__/BaseConfig.cpython-310.pyc
Normal file
BIN
Config/__pycache__/BaseConfig.cpython-310.pyc
Normal file
Binary file not shown.
Binary file not shown.
@@ -1,49 +1,63 @@
|
||||
import openpyxl # 添加缺少的导入
|
||||
import openpyxl
|
||||
import json
|
||||
import os
|
||||
|
||||
from typing import List, Dict, Any
|
||||
from Config.Config import EXCEL_PATH
|
||||
from Util.AreaUtil import query_area_info
|
||||
|
||||
# 创建数据保存目录
|
||||
# ======================= 配置常量 =======================
|
||||
DATA_DIR = os.path.join(os.path.dirname(os.path.dirname(__file__)), 'Data')
|
||||
os.makedirs(DATA_DIR, exist_ok=True)
|
||||
JSON_PATH = os.path.join(DATA_DIR, 'RenKou.json')
|
||||
SHEET_NAME = '人口' # 工作表名称
|
||||
REGION_NAME_COLUMN = 'A' # 区域名称所在列
|
||||
START_ROW = 3 # 数据起始行
|
||||
YEAR_RANGE = range(2015, 2025) # 年份范围
|
||||
|
||||
file_name = EXCEL_PATH
|
||||
population_data = []
|
||||
name_conversion_errors = [] # 记录转换失败的名称
|
||||
conversion_records = [] # 新增:定义转换记录变量
|
||||
# 数据列配置 (指标: (起始列, 结束列))
|
||||
DATA_COLUMNS = {
|
||||
'total_population': ('B', 'K'), # 年末总人口
|
||||
'urban_population': ('L', 'U'), # 城镇人口
|
||||
'rural_population': ('V', 'AE'), # 乡村人口
|
||||
'urbanization_rate': ('AF', 'AO'), # 城镇化率
|
||||
'birth_population': ('AP', 'AY') # 出生人口
|
||||
}
|
||||
|
||||
try:
|
||||
# 加载工作簿并选择人口Sheet
|
||||
workbook = openpyxl.load_workbook(file_name, read_only=True)
|
||||
if '人口' not in workbook.sheetnames:
|
||||
print("❌ 错误:未找到'人口'Sheet")
|
||||
exit(1)
|
||||
sheet = workbook['人口']
|
||||
# ======================= 工具函数 =======================
|
||||
def init_directories() -> None:
|
||||
"""初始化数据目录"""
|
||||
os.makedirs(DATA_DIR, exist_ok=True)
|
||||
|
||||
# 定义数据列范围与英文属性映射
|
||||
data_columns = {
|
||||
'total_population': {'start_col': 'B', 'end_col': 'K', 'year_start': 2015}, # 年末总人口
|
||||
'urban_population': {'start_col': 'L', 'end_col': 'U', 'year_start': 2015}, # 城镇人口
|
||||
'rural_population': {'start_col': 'V', 'end_col': 'AE', 'year_start': 2015}, # 乡村人口
|
||||
'urbanization_rate': {'start_col': 'AF', 'end_col': 'AO', 'year_start': 2015}, # 城镇化率
|
||||
'birth_population': {'start_col': 'AP', 'end_col': 'AY', 'year_start': 2015} # 出生人口
|
||||
}
|
||||
|
||||
# 遍历数据行(跳过前2行表头)
|
||||
for row_num, row in enumerate(sheet.iter_rows(min_row=3, values_only=True), start=3):
|
||||
raw_name = row[0] if row[0] else '未知地区'
|
||||
if not raw_name: # 跳过空行
|
||||
def process_value(value: Any) -> int | float | int:
|
||||
"""处理单元格值,转换为合适的数值类型"""
|
||||
if value is None or str(value).strip() == '':
|
||||
return 0
|
||||
try:
|
||||
if isinstance(value, str):
|
||||
value = value.replace(',', '').strip()
|
||||
return float(value) if '.' in str(value) else int(value)
|
||||
except (ValueError, TypeError):
|
||||
return 0
|
||||
|
||||
# ======================= 核心逻辑 =======================
|
||||
def extract_area_data(sheet: openpyxl.worksheet.worksheet.Worksheet) -> List[Dict[str, Any]]:
|
||||
"""从工作表提取区域数据"""
|
||||
population_data: List[Dict[str, Any]] = []
|
||||
conversion_records: List[Dict[str, str]] = []
|
||||
name_conversion_errors: List[str] = []
|
||||
|
||||
# 遍历数据行
|
||||
for row_num in range(START_ROW, sheet.max_row + 1):
|
||||
row = sheet[row_num]
|
||||
raw_name = str(row[openpyxl.utils.column_index_from_string(REGION_NAME_COLUMN)-1].value or '未知地区').strip()
|
||||
if not raw_name:
|
||||
continue
|
||||
|
||||
# 区域名称转换(核心修改)
|
||||
area_info = query_area_info(raw_name.strip())
|
||||
# 区域名称转换
|
||||
area_info = query_area_info(raw_name)
|
||||
if area_info:
|
||||
area_name = area_info['full_name']
|
||||
area_code = area_info['area_code']
|
||||
# 新增:检查是否发生实际转换
|
||||
if raw_name != area_name:
|
||||
conversion_records.append({
|
||||
'row': row_num,
|
||||
@@ -55,58 +69,77 @@ try:
|
||||
area_code = 'unknown'
|
||||
name_conversion_errors.append(f"行 {row_num}: '{raw_name}'")
|
||||
|
||||
# 构建区域数据
|
||||
area_data = {
|
||||
'area_name': area_name,
|
||||
'area_code': area_code,
|
||||
'raw_name': raw_name # 保留原始名称用于调试
|
||||
'raw_name': raw_name
|
||||
}
|
||||
|
||||
# 提取各指标年度数据
|
||||
for metric, config in data_columns.items():
|
||||
start_col = openpyxl.utils.column_index_from_string(config['start_col']) - 1
|
||||
end_col = openpyxl.utils.column_index_from_string(config['end_col']) - 1
|
||||
for metric, (start_col, end_col) in DATA_COLUMNS.items():
|
||||
start_idx = openpyxl.utils.column_index_from_string(start_col) - 1
|
||||
end_idx = openpyxl.utils.column_index_from_string(end_col) - 1
|
||||
year_data = {}
|
||||
|
||||
for col_idx, year in zip(range(start_col, end_col + 1), range(config['year_start'], 2025)):
|
||||
value = row[col_idx]
|
||||
# 处理空值和非数值
|
||||
if value is None or str(value).strip() == '':
|
||||
year_data[str(year)] = 0
|
||||
else:
|
||||
try:
|
||||
year_data[str(year)] = float(value) if '.' in str(value) else int(value)
|
||||
except (ValueError, TypeError):
|
||||
year_data[str(year)] = 0
|
||||
for col_idx, year in zip(range(start_idx, end_idx + 1), YEAR_RANGE):
|
||||
cell_value = row[col_idx].value
|
||||
year_data[str(year)] = process_value(cell_value)
|
||||
|
||||
area_data[metric] = year_data
|
||||
|
||||
population_data.append(area_data)
|
||||
|
||||
workbook.close()
|
||||
# 输出转换统计
|
||||
print_conversion_stats(conversion_records, name_conversion_errors)
|
||||
return population_data
|
||||
|
||||
# 保存为JSON文件
|
||||
with open(JSON_PATH, 'w', encoding='utf-8') as f:
|
||||
json.dump(population_data, f, ensure_ascii=False, indent=2)
|
||||
|
||||
# 输出转换结果统计
|
||||
print(f"✅ 人口数据提取完成,已保存至:{JSON_PATH}")
|
||||
print(f"📊 共处理 {len(population_data)} 条地区数据")
|
||||
# 输出转换校验结果
|
||||
def print_conversion_stats(conversion_records: List[Dict[str, str]], errors: List[str]) -> None:
|
||||
"""打印名称转换统计信息"""
|
||||
print("\n=== 名称转换记录 ===")
|
||||
if conversion_records:
|
||||
for record in conversion_records:
|
||||
print(f"🔄 行 {record['row']}: {record['raw_name']} → {record['converted_name']}")
|
||||
print(f"📊 共检测到 {len(conversion_records)} 项名称转换")
|
||||
else:
|
||||
print("📝 不存在名称转换的情况")
|
||||
if name_conversion_errors:
|
||||
print(f"⚠️ 发现 {len(name_conversion_errors)} 个区域名称转换失败:")
|
||||
for error in name_conversion_errors:
|
||||
|
||||
if errors:
|
||||
print(f"⚠️ 发现 {len(errors)} 个区域名称转换失败:")
|
||||
for error in errors:
|
||||
print(f" - {error}")
|
||||
else:
|
||||
print("✅ 所有区域名称均成功转换为全称")
|
||||
|
||||
except FileNotFoundError:
|
||||
print(f"🔴 错误:Excel文件 '{file_name}' 不存在")
|
||||
except Exception as e:
|
||||
# ======================= 主函数 =======================
|
||||
def main() -> None:
|
||||
"""人口数据提取主函数"""
|
||||
init_directories()
|
||||
try:
|
||||
# 加载工作簿
|
||||
workbook = openpyxl.load_workbook(EXCEL_PATH, read_only=True, data_only=True)
|
||||
if SHEET_NAME not in workbook.sheetnames:
|
||||
print(f"❌ 错误:未找到'{SHEET_NAME}'工作表")
|
||||
return
|
||||
|
||||
# 提取并处理数据
|
||||
sheet = workbook[SHEET_NAME]
|
||||
population_data = extract_area_data(sheet)
|
||||
|
||||
# 保存结果
|
||||
with open(JSON_PATH, 'w', encoding='utf-8') as f:
|
||||
json.dump(population_data, f, ensure_ascii=False, indent=2)
|
||||
|
||||
print(f"✅ 人口数据提取完成,已保存至:{JSON_PATH}")
|
||||
print(f"📊 共处理 {len(population_data)} 条地区数据")
|
||||
|
||||
except FileNotFoundError:
|
||||
print(f"🔴 错误:Excel文件 '{EXCEL_PATH}' 不存在")
|
||||
except Exception as e:
|
||||
print(f"🔴 处理数据时发生错误:{str(e)}")
|
||||
finally:
|
||||
try:
|
||||
workbook.close()
|
||||
except:
|
||||
pass
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
@@ -1,156 +1,123 @@
|
||||
import openpyxl # 添加缺少的导入
|
||||
import openpyxl
|
||||
import json
|
||||
import os
|
||||
from typing import List, Dict, Any, Tuple
|
||||
|
||||
from Config.Config import EXCEL_PATH
|
||||
from Util.AreaUtil import query_area_info
|
||||
|
||||
# 创建数据保存目录
|
||||
# ======================= 配置常量 =======================
|
||||
"""数据提取配置"""
|
||||
# 数据保存目录
|
||||
DATA_DIR = os.path.join(os.path.dirname(os.path.dirname(__file__)), 'Data')
|
||||
os.makedirs(DATA_DIR, exist_ok=True)
|
||||
JSON_PATH = os.path.join(DATA_DIR, 'MaoRuXueLv.json') # 修改为毛入学率的JSON路径
|
||||
# JSON输出路径
|
||||
JSON_PATH = os.path.join(DATA_DIR, 'MaoRuXueLv.json')
|
||||
# 工作表名称
|
||||
SHEET_NAME = '毛入学率'
|
||||
# 数据起始行
|
||||
START_ROW = 5
|
||||
# 区域名称所在列
|
||||
REGION_NAME_COLUMN = 'B'
|
||||
# 年份范围
|
||||
YEAR_RANGE = [2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024]
|
||||
|
||||
file_name = EXCEL_PATH
|
||||
enrollment_data = []
|
||||
name_conversion_errors = [] # 记录转换失败的名称
|
||||
conversion_records = [] # 定义转换记录变量
|
||||
|
||||
try:
|
||||
# 加载工作簿并选择毛入学率Sheet
|
||||
workbook = openpyxl.load_workbook(file_name, read_only=True)
|
||||
if '毛入学率' not in workbook.sheetnames:
|
||||
print("❌ 错误:未找到'毛入学率'Sheet")
|
||||
exit(1)
|
||||
sheet = workbook['毛入学率']
|
||||
|
||||
# 定义数据列范围与英文属性映射
|
||||
# 学前教育(交替列逻辑)
|
||||
data_columns = {
|
||||
# 学前教育 - 交替列映射(2015-2024)
|
||||
# 数据列映射配置
|
||||
DATA_COLUMNS = {
|
||||
# 学前教育 - 交替列映射
|
||||
'preschool_enrollment': {
|
||||
'columns': ['D', 'F', 'H', 'J', 'L', 'N', 'P', 'R', 'T', 'V'],
|
||||
'years': [2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024]
|
||||
'years': YEAR_RANGE
|
||||
},
|
||||
'preschool_enrollment_rate': {
|
||||
'columns': ['E', 'G', 'I', 'K', 'M', 'O', 'Q', 'S', 'U', 'W'],
|
||||
'years': [2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024]
|
||||
'years': YEAR_RANGE
|
||||
},
|
||||
|
||||
# 小学教育(X-AQ列,交替列逻辑)
|
||||
# 小学教育
|
||||
'primary_enrollment': {
|
||||
'columns': ['X', 'Z', 'AB', 'AD', 'AF', 'AH', 'AJ', 'AL', 'AN', 'AP'],
|
||||
'years': [2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024]
|
||||
'years': YEAR_RANGE
|
||||
},
|
||||
'primary_enrollment_rate': {
|
||||
'columns': ['Y', 'AA', 'AC', 'AE', 'AG', 'AI', 'AK', 'AM', 'AO', 'AQ'],
|
||||
'years': [2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024]
|
||||
'years': YEAR_RANGE
|
||||
},
|
||||
|
||||
# 初中教育(AR-BK列,交替列逻辑)
|
||||
# 初中教育
|
||||
'junior_high_enrollment': {
|
||||
'columns': ['AR', 'AT', 'AV', 'AX', 'AZ', 'BB', 'BD', 'BF', 'BH', 'BJ'],
|
||||
'years': [2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024]
|
||||
'years': YEAR_RANGE
|
||||
},
|
||||
'junior_high_enrollment_rate': {
|
||||
'columns': ['AS', 'AU', 'AW', 'AY', 'BA', 'BC', 'BE', 'BG', 'BI', 'BK'],
|
||||
'years': [2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024]
|
||||
'years': YEAR_RANGE
|
||||
},
|
||||
|
||||
# 普通高中教育(BL-CE列,交替列逻辑)
|
||||
# 普通高中教育
|
||||
'senior_high_enrollment': {
|
||||
'columns': ['BL', 'BN', 'BP', 'BR', 'BT', 'BV', 'BX', 'BZ', 'CB', 'CD'],
|
||||
'years': [2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024]
|
||||
'years': YEAR_RANGE
|
||||
},
|
||||
'senior_high_enrollment_rate': {
|
||||
'columns': ['BM', 'BO', 'BQ', 'BS', 'BU', 'BW', 'BY', 'CA', 'CC', 'CE'],
|
||||
'years': [2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024]
|
||||
'years': YEAR_RANGE
|
||||
},
|
||||
|
||||
# 中职教育(CF-CY列,交替列逻辑)
|
||||
# 中职教育
|
||||
'vocational_enrollment': {
|
||||
'columns': ['CF', 'CH', 'CJ', 'CL', 'CN', 'CP', 'CR', 'CT', 'CV', 'CX'],
|
||||
'years': [2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024]
|
||||
'years': YEAR_RANGE
|
||||
},
|
||||
'vocational_enrollment_rate': {
|
||||
'columns': ['CG', 'CI', 'CK', 'CM', 'CO', 'CQ', 'CS', 'CU', 'CW', 'CY'],
|
||||
'years': [2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024]
|
||||
}
|
||||
'years': YEAR_RANGE
|
||||
}
|
||||
}
|
||||
|
||||
# 遍历数据行(跳过前4行表头)
|
||||
for row_num, row in enumerate(sheet.iter_rows(min_row=5, values_only=True), start=5):
|
||||
# 区域名称从B列获取(索引1),原代码是从A列(索引0)获取
|
||||
raw_name = row[1] if (len(row) > 1 and row[1] is not None) else '未知地区'
|
||||
if not raw_name: # 跳过空行
|
||||
continue
|
||||
# ======================= 工具函数 =======================
|
||||
def init_directories() -> None:
|
||||
"""初始化数据目录
|
||||
创建数据保存目录,如果目录已存在则不执行操作
|
||||
"""
|
||||
os.makedirs(DATA_DIR, exist_ok=True)
|
||||
|
||||
# 区域名称转换(核心修改)
|
||||
# 确保raw_name为字符串类型再调用strip()
|
||||
str_raw_name = str(raw_name).strip() if raw_name is not None else '未知地区'
|
||||
area_info = query_area_info(str_raw_name)
|
||||
if area_info:
|
||||
area_name = area_info['full_name']
|
||||
area_code = area_info['area_code']
|
||||
# 检查是否发生实际转换
|
||||
if raw_name != area_name:
|
||||
conversion_records.append({
|
||||
'row': row_num,
|
||||
'raw_name': raw_name,
|
||||
'converted_name': area_name
|
||||
})
|
||||
else:
|
||||
area_name = raw_name
|
||||
area_code = 'unknown'
|
||||
name_conversion_errors.append(f"行 {row_num}: '{raw_name}'")
|
||||
|
||||
area_data = {
|
||||
'area_name': area_name,
|
||||
'area_code': area_code,
|
||||
'raw_name': raw_name # 保留原始名称用于调试
|
||||
}
|
||||
def process_value(value: Any) -> int | float | int:
|
||||
"""处理单元格值,转换为合适的数值类型
|
||||
|
||||
# 提取各指标年度数据
|
||||
for metric, config in data_columns.items():
|
||||
year_data = {}
|
||||
# 仅保留显式列名映射处理逻辑(完全移除旧格式代码)
|
||||
if 'columns' in config and 'years' in config:
|
||||
# 遍历预设的列名和年份对应关系
|
||||
for col_name, year in zip(config['columns'], config['years']):
|
||||
col_idx = openpyxl.utils.column_index_from_string(col_name) - 1
|
||||
if col_idx < len(row):
|
||||
value = row[col_idx]
|
||||
# 处理空值和非数值(增强版)
|
||||
Args:
|
||||
value: 原始单元格值
|
||||
|
||||
Returns:
|
||||
int | float | int: 转换后的数值,无法转换时返回0
|
||||
"""
|
||||
if value is None:
|
||||
year_data[str(year)] = 0
|
||||
else:
|
||||
return 0
|
||||
|
||||
# 统一转换为字符串处理
|
||||
str_value = str(value).strip()
|
||||
if str_value == '' or str_value == '####':
|
||||
year_data[str(year)] = 0
|
||||
else:
|
||||
return 0
|
||||
|
||||
try:
|
||||
if '%' in str_value:
|
||||
# 移除百分号并转换为小数
|
||||
year_data[str(year)] = float(str_value.replace('%', ''))
|
||||
return float(str_value.replace('%', ''))
|
||||
elif '.' in str_value:
|
||||
return float(str_value)
|
||||
else:
|
||||
year_data[str(year)] = float(str_value) if '.' in str_value else int(str_value)
|
||||
return int(str_value)
|
||||
except (ValueError, TypeError):
|
||||
year_data[str(year)] = 0
|
||||
# 删除旧格式的start_col/end_col处理分支
|
||||
area_data[metric] = year_data
|
||||
return 0
|
||||
|
||||
enrollment_data.append(area_data)
|
||||
|
||||
workbook.close()
|
||||
def print_conversion_stats(conversion_records: List[Dict[str, str]], errors: List[str]) -> None:
|
||||
"""打印名称转换统计信息
|
||||
|
||||
# 保存为JSON文件
|
||||
with open(JSON_PATH, 'w', encoding='utf-8') as f:
|
||||
json.dump(enrollment_data, f, ensure_ascii=False, indent=2)
|
||||
|
||||
# 输出转换结果统计
|
||||
print(f"✅ 毛入学率数据提取完成,已保存至:{JSON_PATH}")
|
||||
print(f"📊 共处理 {len(enrollment_data)} 条地区数据")
|
||||
# 输出转换校验结果
|
||||
Args:
|
||||
conversion_records: 转换记录列表
|
||||
errors: 错误信息列表
|
||||
"""
|
||||
print("\n=== 名称转换记录 ===")
|
||||
if conversion_records:
|
||||
for record in conversion_records:
|
||||
@@ -158,15 +125,119 @@ try:
|
||||
print(f"📊 共检测到 {len(conversion_records)} 项名称转换")
|
||||
else:
|
||||
print("📝 不存在名称转换的情况")
|
||||
if name_conversion_errors:
|
||||
print(f"⚠️ 发现 {len(name_conversion_errors)} 个区域名称转换失败:")
|
||||
for error in name_conversion_errors:
|
||||
|
||||
if errors:
|
||||
print(f"⚠️ 发现 {len(errors)} 个区域名称转换失败:")
|
||||
for error in errors:
|
||||
print(f" - {error}")
|
||||
else:
|
||||
print("✅ 所有区域名称均成功转换为全称")
|
||||
|
||||
except FileNotFoundError:
|
||||
print(f"🔴 错误:Excel文件 '{file_name}' 不存在")
|
||||
except Exception as e:
|
||||
# ======================= 核心逻辑 =======================
|
||||
def extract_enrollment_data(sheet: openpyxl.worksheet.worksheet.Worksheet) -> Tuple[List[Dict[str, Any]], List[Dict[str, str]], List[str]]:
|
||||
"""从工作表提取毛入学率数据
|
||||
|
||||
Args:
|
||||
sheet: 毛入学率工作表对象
|
||||
|
||||
Returns:
|
||||
Tuple包含:
|
||||
- enrollment_data: 提取的毛入学率数据列表
|
||||
- conversion_records: 名称转换记录
|
||||
- name_conversion_errors: 名称转换错误列表
|
||||
"""
|
||||
enrollment_data: List[Dict[str, Any]] = []
|
||||
conversion_records: List[Dict[str, str]] = []
|
||||
name_conversion_errors: List[str] = []
|
||||
|
||||
# 计算区域名称列索引
|
||||
region_col_idx = openpyxl.utils.column_index_from_string(REGION_NAME_COLUMN) - 1
|
||||
|
||||
# 遍历数据行
|
||||
for row_num, row in enumerate(sheet.iter_rows(min_row=START_ROW, values_only=True), start=START_ROW):
|
||||
# 获取区域名称
|
||||
raw_name = row[region_col_idx] if (len(row) > region_col_idx and row[region_col_idx] is not None) else '未知地区'
|
||||
if not raw_name:
|
||||
continue
|
||||
|
||||
# 区域名称转换
|
||||
str_raw_name = str(raw_name).strip() if raw_name is not None else '未知地区'
|
||||
area_info = query_area_info(str_raw_name)
|
||||
|
||||
if area_info:
|
||||
area_name = area_info['full_name']
|
||||
area_code = area_info['area_code']
|
||||
|
||||
# 记录名称转换
|
||||
if str_raw_name != area_name:
|
||||
conversion_records.append({
|
||||
'row': row_num,
|
||||
'raw_name': str_raw_name,
|
||||
'converted_name': area_name
|
||||
})
|
||||
else:
|
||||
area_name = str_raw_name
|
||||
area_code = 'unknown'
|
||||
name_conversion_errors.append(f"行 {row_num}: '{str_raw_name}'")
|
||||
|
||||
# 创建区域数据对象
|
||||
area_data = {
|
||||
'area_name': area_name,
|
||||
'area_code': area_code,
|
||||
'raw_name': str_raw_name # 保留原始名称用于调试
|
||||
}
|
||||
|
||||
# 提取各指标年度数据
|
||||
for metric, config in DATA_COLUMNS.items():
|
||||
year_data = {}
|
||||
if 'columns' in config and 'years' in config:
|
||||
for col_name, year in zip(config['columns'], config['years']):
|
||||
col_idx = openpyxl.utils.column_index_from_string(col_name) - 1
|
||||
if col_idx < len(row):
|
||||
value = row[col_idx]
|
||||
year_data[str(year)] = process_value(value)
|
||||
area_data[metric] = year_data
|
||||
|
||||
enrollment_data.append(area_data)
|
||||
|
||||
return enrollment_data, conversion_records, name_conversion_errors
|
||||
|
||||
# ======================= 主函数 =======================
|
||||
def main() -> None:
|
||||
"""主函数:执行毛入学率数据提取流程"""
|
||||
try:
|
||||
# 初始化目录
|
||||
init_directories()
|
||||
|
||||
# 加载工作簿并选择工作表
|
||||
workbook = openpyxl.load_workbook(EXCEL_PATH, read_only=True)
|
||||
|
||||
if SHEET_NAME not in workbook.sheetnames:
|
||||
print(f"❌ 错误:未找到'{SHEET_NAME}'Sheet")
|
||||
return
|
||||
|
||||
sheet = workbook[SHEET_NAME]
|
||||
|
||||
# 提取数据
|
||||
enrollment_data, conversion_records, name_conversion_errors = extract_enrollment_data(sheet)
|
||||
|
||||
# 关闭工作簿释放资源
|
||||
workbook.close()
|
||||
|
||||
# 保存为JSON文件
|
||||
with open(JSON_PATH, 'w', encoding='utf-8') as f:
|
||||
json.dump(enrollment_data, f, ensure_ascii=False, indent=2)
|
||||
|
||||
# 输出结果统计
|
||||
print(f"✅ 毛入学率数据提取完成,已保存至:{JSON_PATH}")
|
||||
print(f"📊 共处理 {len(enrollment_data)} 条地区数据")
|
||||
print_conversion_stats(conversion_records, name_conversion_errors)
|
||||
|
||||
except FileNotFoundError:
|
||||
print(f"🔴 错误:Excel文件 '{EXCEL_PATH}' 不存在")
|
||||
except Exception as e:
|
||||
print(f"🔴 处理数据时发生错误:{str(e)}")
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
||||
|
Binary file not shown.
Reference in New Issue
Block a user