Files
YunNanProject/Tools/T6_ZaiXiaoShengCount.py

282 lines
12 KiB
Python
Raw Permalink Normal View History

2025-09-10 11:29:48 +08:00
import os
2025-09-10 14:09:58 +08:00
import json
2025-09-10 11:56:56 +08:00
import traceback
2025-09-10 14:09:58 +08:00
from typing import List, Dict, Any, Tuple
2025-09-10 11:56:56 +08:00
from openpyxl.utils import column_index_from_string
2025-09-10 14:09:58 +08:00
from openpyxl.workbook import Workbook
from openpyxl.worksheet.worksheet import Worksheet
2025-09-10 11:29:48 +08:00
from Config.Config import EXCEL_PATH
from Util.AreaUtil import query_area_info
2025-09-10 14:09:58 +08:00
from Util.DataUtil import (
init_directories,
process_value,
print_conversion_stats,
convert_area_name,
save_to_json,
load_workbook_sheet
)
2025-09-10 11:29:48 +08:00
2025-09-10 14:09:58 +08:00
# ======================== 配置常量 ======================== #
# 数据目录和JSON路径
2025-09-10 11:29:48 +08:00
DATA_DIR = os.path.join(os.path.dirname(os.path.dirname(__file__)), 'Data')
2025-09-10 14:09:58 +08:00
JSON_PATH = os.path.join(DATA_DIR, 'ZaiXiaoShengCount.json')
# 工作表名称
SHEET_NAME = '在校生数'
# 区域名称所在列
REGION_NAME_COLUMN = 'B'
# 数据起始行
2025-09-10 16:14:35 +08:00
START_ROW = 4
2025-09-10 14:09:58 +08:00
# 年份范围
YEAR_RANGE = range(2015, 2025)
2025-09-10 11:29:48 +08:00
2025-09-10 11:56:56 +08:00
# 教育阶段配置 - 在校生数(2015-2024年)
2025-09-10 14:09:58 +08:00
EDUCATION_STAGES = [
2025-09-10 11:56:56 +08:00
{
'name': 'preschool',
'chinese_name': '学前教育',
'columns': [
{'year': 2015, 'urban': 'D', 'town': 'E', 'rural': 'F', 'total': 'G'},
{'year': 2016, 'urban': 'H', 'town': 'I', 'rural': 'J', 'total': 'K'},
{'year': 2017, 'urban': 'L', 'town': 'M', 'rural': 'N', 'total': 'O'},
{'year': 2018, 'urban': 'P', 'town': 'Q', 'rural': 'R', 'total': 'S'},
{'year': 2019, 'urban': 'T', 'town': 'U', 'rural': 'V', 'total': 'W'},
{'year': 2020, 'urban': 'X', 'town': 'Y', 'rural': 'Z', 'total': 'AA'},
{'year': 2021, 'urban': 'AB', 'town': 'AC', 'rural': 'AD', 'total': 'AE'},
{'year': 2022, 'urban': 'AF', 'town': 'AG', 'rural': 'AH', 'total': 'AI'},
{'year': 2023, 'urban': 'AJ', 'town': 'AK', 'rural': 'AL', 'total': 'AM'},
{'year': 2024, 'urban': 'AN', 'town': 'AO', 'rural': 'AP', 'total': 'AQ'}
]
},
{
'name': 'primary',
'chinese_name': '小学教育',
'columns': [
{'year': 2015, 'urban': 'AR', 'town': 'AS', 'rural': 'AT', 'total': 'AU'},
{'year': 2016, 'urban': 'AV', 'town': 'AW', 'rural': 'AX', 'total': 'AY'},
{'year': 2017, 'urban': 'AZ', 'town': 'BA', 'rural': 'BB', 'total': 'BC'},
{'year': 2018, 'urban': 'BD', 'town': 'BE', 'rural': 'BF', 'total': 'BG'},
{'year': 2019, 'urban': 'BH', 'town': 'BI', 'rural': 'BJ', 'total': 'BK'},
{'year': 2020, 'urban': 'BL', 'town': 'BM', 'rural': 'BN', 'total': 'BO'},
{'year': 2021, 'urban': 'BP', 'town': 'BQ', 'rural': 'BR', 'total': 'BS'},
{'year': 2022, 'urban': 'BT', 'town': 'BU', 'rural': 'BV', 'total': 'BW'},
{'year': 2023, 'urban': 'BX', 'town': 'BY', 'rural': 'BZ', 'total': 'CA'},
{'year': 2024, 'urban': 'CB', 'town': 'CC', 'rural': 'CD', 'total': 'CE'}
]
},
{
'name': 'junior',
'chinese_name': '初中教育',
'columns': [
{'year': 2015, 'urban': 'CF', 'town': 'CG', 'rural': 'CH', 'total': 'CI'},
{'year': 2016, 'urban': 'CJ', 'town': 'CK', 'rural': 'CL', 'total': 'CM'},
{'year': 2017, 'urban': 'CN', 'town': 'CO', 'rural': 'CP', 'total': 'CQ'},
{'year': 2018, 'urban': 'CR', 'town': 'CS', 'rural': 'CT', 'total': 'CU'},
{'year': 2019, 'urban': 'CV', 'town': 'CW', 'rural': 'CX', 'total': 'CY'},
{'year': 2020, 'urban': 'CZ', 'town': 'DA', 'rural': 'DB', 'total': 'DC'},
{'year': 2021, 'urban': 'DD', 'town': 'DE', 'rural': 'DF', 'total': 'DG'},
{'year': 2022, 'urban': 'DH', 'town': 'DI', 'rural': 'DJ', 'total': 'DK'},
{'year': 2023, 'urban': 'DL', 'town': 'DM', 'rural': 'DN', 'total': 'DO'},
{'year': 2024, 'urban': 'DP', 'town': 'DQ', 'rural': 'DR', 'total': 'DS'}
]
},
{
'name': 'senior',
'chinese_name': '高中教育',
'columns': [
{'year': 2015, 'urban': 'DT', 'town': 'DU', 'rural': 'DV', 'total': 'DW'},
{'year': 2016, 'urban': 'DX', 'town': 'DY', 'rural': 'DZ', 'total': 'EA'},
{'year': 2017, 'urban': 'EB', 'town': 'EC', 'rural': 'ED', 'total': 'EE'},
{'year': 2018, 'urban': 'EF', 'town': 'EG', 'rural': 'EH', 'total': 'EI'},
{'year': 2019, 'urban': 'EJ', 'town': 'EK', 'rural': 'EL', 'total': 'EM'},
{'year': 2020, 'urban': 'EN', 'town': 'EO', 'rural': 'EP', 'total': 'EQ'},
{'year': 2021, 'urban': 'ER', 'town': 'ES', 'rural': 'ET', 'total': 'EU'},
{'year': 2022, 'urban': 'EV', 'town': 'EW', 'rural': 'EX', 'total': 'EY'},
{'year': 2023, 'urban': 'EZ', 'town': 'FA', 'rural': 'FB', 'total': 'FC'},
{'year': 2024, 'urban': 'FD', 'town': 'FE', 'rural': 'FF', 'total': 'FG'}
]
},
{
'name': 'vocational',
'chinese_name': '中职教育',
'columns': [
{'year': 2015, 'total': 'FH'},
{'year': 2016, 'total': 'FI'},
{'year': 2017, 'total': 'FJ'},
{'year': 2018, 'total': 'FK'},
{'year': 2019, 'total': 'FL'},
{'year': 2020, 'total': 'FM'},
{'year': 2021, 'total': 'FN'},
{'year': 2022, 'total': 'FO'},
{'year': 2023, 'total': 'FP'},
{'year': 2024, 'total': 'FQ'}
]
}
]
2025-09-10 11:29:48 +08:00
2025-09-10 14:09:58 +08:00
# ======================== 核心逻辑 ======================== #
def extract_stage_data(row: Tuple[Any, ...], stage: Dict[str, Any]) -> Dict[str, Dict[str, int]]:
"""
提取单个教育阶段的在校生数据
:param row: Excel行数据
:param stage: 教育阶段配置
:return: 格式化的阶段数据
"""
stage_data = {}
for year_config in stage['columns']:
year = year_config['year']
year_data = {}
# 处理多类别教育阶段(学前到高中)
if 'urban' in year_config:
# 城区
urban_col = column_index_from_string(year_config['urban']) - 1
urban_val = row[urban_col] if len(row) > urban_col else None
year_data['urban'] = process_value(urban_val)
# 镇区
town_col = column_index_from_string(year_config['town']) - 1
town_val = row[town_col] if len(row) > town_col else None
year_data['town'] = process_value(town_val)
# 乡村
rural_col = column_index_from_string(year_config['rural']) - 1
rural_val = row[rural_col] if len(row) > rural_col else None
year_data['rural'] = process_value(rural_val)
# 总计
total_col = column_index_from_string(year_config['total']) - 1
total_val = row[total_col] if len(row) > total_col else None
year_data['total'] = process_value(total_val)
# 处理中职教育(单值)
else:
total_col = column_index_from_string(year_config['total']) - 1
total_val = row[total_col] if len(row) > total_col else None
year_data['total'] = process_value(total_val)
stage_data[str(year)] = year_data
return stage_data
# 修改函数定义更新返回类型注解为4个值
def extract_student_data(sheet: Worksheet) -> Tuple[List[Dict[str, Any]], List[str], List[str], int]:
"""
提取所有区域的在校生数据
:param sheet: Excel工作表对象
:return: 在校生数据列表转换错误列表处理总数
"""
2025-09-10 11:56:56 +08:00
student_data = []
name_conversion_errors = []
conversion_records = []
processed_count = 0
2025-09-10 14:09:58 +08:00
region_col_index = column_index_from_string(REGION_NAME_COLUMN) - 1
print(f"✅ 开始处理在校生数数据,共{sheet.max_row}行数据")
# 遍历行数据
for row_idx, row in enumerate(sheet.iter_rows(values_only=True), start=1):
# 跳过表头行
if row_idx < START_ROW:
continue
try:
# 检查行是否有足够的列
if len(row) <= region_col_index:
print(f"⚠️ 第{row_idx}行数据不足,跳过")
2025-09-10 11:56:56 +08:00
continue
2025-09-10 14:09:58 +08:00
# 提取区域名称
raw_name = row[region_col_index]
# 修复:接收四个返回值并合并结果
area_name, area_code, new_conversion, new_errors = convert_area_name(raw_name, row_idx)
conversion_records.extend(new_conversion)
name_conversion_errors.extend(new_errors)
is_valid = len(new_errors) == 0
# 记录转换结果
if is_valid:
# 将字符串记录改为字典格式
conversion_records.append({
'row': row_idx,
'raw_name': raw_name,
'converted_name': area_name,
'status': 'success'
})
processed_count += 1
else:
error_msg = f"{row_idx}行: {raw_name}"
name_conversion_errors.append(error_msg)
# 将字符串记录改为字典格式
conversion_records.append({
'row': row_idx,
2025-09-10 11:56:56 +08:00
'raw_name': raw_name,
2025-09-10 14:09:58 +08:00
'converted_name': None,
'status': 'error'
})
2025-09-10 11:56:56 +08:00
continue
2025-09-10 14:09:58 +08:00
# 创建区域数据对象
area_data = {
'area_name': area_name,
'area_code': area_code,
'raw_name': str(raw_name).strip(),
'student_data': {}
}
# 提取各教育阶段数据
for stage in EDUCATION_STAGES:
stage_name = stage['name']
area_data['student_data'][stage_name] = extract_stage_data(row, stage)
student_data.append(area_data)
# 进度提示
if processed_count % 10 == 0 and processed_count > 0:
print(f"🔄 已处理{processed_count}条数据...")
except Exception as e:
print(f"🔴 处理第{row_idx}行时发生错误:{str(e)}")
continue
# 修改return语句添加name_conversion_errors返回值
return student_data, conversion_records, name_conversion_errors, processed_count
def main() -> None:
"""主函数:执行在校生数数据处理流程"""
try:
# 初始化目录
init_directories(DATA_DIR) # 修复:移除列表括号,直接传入路径字符串
# 加载Excel工作表
sheet = load_workbook_sheet(EXCEL_PATH, SHEET_NAME)
if not sheet:
print(f"❌ 错误:未找到'{SHEET_NAME}'工作表")
return
# 提取数据
# 修复:调整返回值顺序,获取转换记录列表
student_data, conversion_records, name_conversion_errors, processed_count = extract_student_data(sheet)
# 保存数据到JSON
save_to_json(student_data, JSON_PATH)
# 打印转换统计
# 修复:传入转换记录列表而非处理数量
print_conversion_stats(conversion_records, name_conversion_errors)
2025-09-10 11:56:56 +08:00
print(f"💾 数据已保存至 {JSON_PATH}")
2025-09-10 14:09:58 +08:00
2025-09-10 11:56:56 +08:00
except FileNotFoundError:
2025-09-10 14:09:58 +08:00
print(f"🔴 错误Excel文件 '{EXCEL_PATH}' 不存在")
2025-09-10 11:56:56 +08:00
except Exception as e:
print(f"🔴 处理数据时发生错误:{str(e)}{traceback.format_exc()}")
2025-09-10 14:09:58 +08:00
2025-09-10 11:56:56 +08:00
if __name__ == "__main__":
main()
2025-09-10 11:29:48 +08:00