You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

61 lines
2.3 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

from WxMini.Milvus.Config.MulvusConfig import *
from WxMini.Milvus.Utils.MilvusCollectionManager import MilvusCollectionManager
from WxMini.Milvus.Utils.MilvusConnectionPool import *
from gensim.models import KeyedVectors
import jieba
import time
# 1. 加载预训练的 Word2Vec 模型
model_path = MS_MODEL_PATH
model = KeyedVectors.load_word2vec_format(model_path, binary=False, limit=MS_MODEL_LIMIT)
print(f"模型加载成功,词向量维度: {model.vector_size}")
# 功能:将文本转换为嵌入向量
def text_to_embedding(text):
words = jieba.lcut(text) # 使用 jieba 分词
print(f"文本: {text}, 分词结果: {words}")
embeddings = [model[word] for word in words if word in model]
print(f"有效词向量数量: {len(embeddings)}")
if embeddings:
avg_embedding = sum(embeddings) / len(embeddings)
print(f"生成的平均向量: {avg_embedding[:5]}...") # 打印前 5 维
return avg_embedding
else:
print("未找到有效词,返回零向量")
return [0.0] * model.vector_size
# 2. 使用连接池管理 Milvus 连接
milvus_pool = MilvusConnectionPool(host=MS_HOST, port=MS_PORT, max_connections=MS_MAX_CONNECTIONS)
# 3. 从连接池中获取一个连接
connection = milvus_pool.get_connection()
# 4. 初始化集合管理器
collection_name = MS_COLLECTION_NAME
collection_manager = MilvusCollectionManager(collection_name)
# 5. 输入一个用户问题
user_input = input("请输入一句话:") # 例如:“我今天心情不太好”
model_response = "我没听懂,能再说一遍吗?" # 大模型的固定回复
timestamp = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) # 当前时间
session_id = "session_001" # 会话 ID可以根据需要动态生成
# 6. 将用户问题转换为嵌入向量
user_embedding = text_to_embedding(user_input)
# 7. 插入数据,确保字段顺序与集合定义一致
entities = [
[session_id], # session_id
[user_input], # user_input
[model_response], # model_response
[timestamp], # timestamp
[user_embedding] # embedding
]
collection_manager.insert_data(entities)
print("数据插入成功。")
# 8. 释放连接
milvus_pool.release_connection(connection)
# 9. 关闭连接池
milvus_pool.close()