You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

132 lines
4.6 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import json
import uuid
import uvicorn # 导入 uvicorn
from fastapi import FastAPI, Depends, Form
from openai import OpenAI
from starlette.staticfiles import StaticFiles
from Config import MODEL_API_KEY, MODEL_API_URL, MODEL_NAME
from Model.biModel import *
from Text2Sql.Util.MarkdownToDocxUtil import markdown_to_docx
from Text2Sql.Util.PostgreSQLUtil import get_db
from Text2Sql.Util.SaveToExcel import save_to_excel
from Text2Sql.Util.VannaUtil import VannaUtil
# 初始化 FastAPI
app = FastAPI()
# 配置静态文件目录
app.mount("/static", StaticFiles(directory="static"), name="static")
# 初始化一次vanna的类
vn = VannaUtil()
@app.get("/")
def read_root():
return {"message": "Welcome to AI SQL World!"}
# 通过语义生成Excel
# http://10.10.21.20:8000/questions/get_excel
@app.post("/questions/get_excel")
def get_excel(question_id: str = Form(...), question_str: str = Form(...), db: PostgreSQLUtil = Depends(get_db)):
# 只接受guid号
if len(question_id) != 36:
return {"success": False, "message": "question_id格式错误"}
common_prompt = '''
返回的信息要求:
1、行政区划为NULL 或者是空字符的不参加统计
2、目标数据库是Postgresql 16
'''
question = question_str + common_prompt
# 先删除后插入,防止重复插入
delete_question(db, question_id)
insert_question(db, question_id, question)
# 获取完整 SQL
sql = vn.generate_sql(question)
print("生成的查询 SQL:\n", sql)
# 更新question_id
update_question_by_id(db, question_id=question_id, sql=sql, state_id=1)
# 执行SQL查询
_data = db.execute_query(sql)
# 在static目录下生成一个guid号的临时文件
uuid_str = str(uuid.uuid4())
filename = f"static/{uuid_str}.xlsx"
save_to_excel(_data, filename)
# 更新EXCEL文件名称
update_question_by_id(db, question_id, excel_file_name=filename)
# 返回静态文件URL
return {"success": True, "message": "Excel文件生成成功", "download_url": f"/static/{uuid_str}.xlsx"}
# 获取docx
# http://10.10.21.20:8000/questions/get_docx
@app.post("/questions/get_docx")
def get_docx(question_id: str = Form(...), db: PostgreSQLUtil = Depends(get_db)):
select_sql = """
select * from t_bi_question where id=%s
"""
_data = db.execute_query(select_sql, (question_id,))
sql = _data[0]['sql']
# 4、生成word报告
prompt = '''
请根据以下 JSON 数据整理出2000字左右的话描述当前数据情况。要求
1、以Markdown格式返回我将直接通过markdown格式生成Word。
2、标题统一为长春云校数据分析报告
3、内容中不要提到JSON数据统一称数据
4、尽量以条目列出这样更清晰
5、数据
'''
_data = db.execute_query(sql)
prompt = prompt + json.dumps(_data, ensure_ascii=False)
# 初始化 OpenAI 客户端
client = OpenAI(
api_key=MODEL_API_KEY,
base_url=MODEL_API_URL,
)
# 调用 OpenAI API 生成总结(流式输出)
response = client.chat.completions.create(
model=MODEL_NAME,
messages=[
{"role": "system", "content": "你是一个数据分析助手,擅长从 JSON 数据中提取关键信息并生成详细的总结。"},
{"role": "user", "content": prompt}
],
max_tokens=3000, # 控制生成内容的长度
temperature=0.7, # 控制生成内容的创造性
stream=True # 启用流式输出
)
# 初始化变量用于存储流式输出的内容
summary = ""
# 处理流式输出
for chunk in response:
if chunk.choices[0].delta.content: # 检查是否有内容
chunk_content = chunk.choices[0].delta.content
print(chunk_content, end="", flush=True) # 实时打印到控制台
summary += chunk_content # 将内容拼接到 summary 中
# 最终 summary 为完整的 Markdown 内容
print("\n\n流式输出完成summary 已拼接为完整字符串。")
# 生成 Word 文档
uuid_str = str(uuid.uuid4())
filename = f"static/{uuid_str}.docx"
markdown_to_docx(summary, output_file=filename)
# 返回静态文件URL
return {"success": True, "message": "Word文件生成成功", "download_url": f"/static/{uuid_str}.docx"}
# 确保直接运行脚本时启动 FastAPI 应用
if __name__ == "__main__":
uvicorn.run("app:app", host="0.0.0.0", port=8000, reload=True)