You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

882 lines
30 KiB

#include "application.h"
#include "board.h"
#include "display.h"
#include "system_info.h"
#include "ml307_ssl_transport.h"
#include "audio_codec.h"
#include "mqtt_protocol.h"
#include "websocket_protocol.h"
#include "font_awesome_symbols.h"
#include "iot/thing_manager.h"
#include "assets/lang_config.h"
#include <cstring>
#include <esp_log.h>
#include <cJSON.h>
#include <driver/gpio.h>
#include <arpa/inet.h>
#define TAG "Application"
static const char* const STATE_STRINGS[] = {
"unknown",
"starting",
"configuring",
"idle",
"connecting",
"listening",
"speaking",
"upgrading",
"activating",
"fatal_error",
"invalid_state"
};
Application::Application() {
event_group_ = xEventGroupCreate();
background_task_ = new BackgroundTask(4096 * 8);
esp_timer_create_args_t clock_timer_args = {
.callback = [](void* arg) {
Application* app = (Application*)arg;
app->OnClockTimer();
},
.arg = this,
.dispatch_method = ESP_TIMER_TASK,
.name = "clock_timer",
.skip_unhandled_events = true
};
esp_timer_create(&clock_timer_args, &clock_timer_handle_);
esp_timer_start_periodic(clock_timer_handle_, 1000000);
}
Application::~Application() {
if (clock_timer_handle_ != nullptr) {
esp_timer_stop(clock_timer_handle_);
esp_timer_delete(clock_timer_handle_);
}
if (background_task_ != nullptr) {
delete background_task_;
}
vEventGroupDelete(event_group_);
}
void Application::CheckNewVersion() {
const int MAX_RETRY = 10;
int retry_count = 0;
while (true) {
auto display = Board::GetInstance().GetDisplay();
if (!ota_.CheckVersion()) {
retry_count++;
if (retry_count >= MAX_RETRY) {
ESP_LOGE(TAG, "Too many retries, exit version check");
return;
}
ESP_LOGW(TAG, "Check new version failed, retry in %d seconds (%d/%d)", 60, retry_count, MAX_RETRY);
vTaskDelay(pdMS_TO_TICKS(60000));
continue;
}
retry_count = 0;
if (ota_.HasNewVersion()) {
Alert(Lang::Strings::OTA_UPGRADE, Lang::Strings::UPGRADING, "happy", Lang::Sounds::P3_UPGRADE);
vTaskDelay(pdMS_TO_TICKS(3000));
SetDeviceState(kDeviceStateUpgrading);
display->SetIcon(FONT_AWESOME_DOWNLOAD);
std::string message = std::string(Lang::Strings::NEW_VERSION) + ota_.GetFirmwareVersion();
display->SetChatMessage("system", message.c_str());
auto& board = Board::GetInstance();
board.SetPowerSaveMode(false);
#if CONFIG_USE_WAKE_WORD_DETECT
wake_word_detect_.StopDetection();
#endif
// 预先关闭音频输出,避免升级过程有音频操作
auto codec = board.GetAudioCodec();
codec->EnableInput(false);
codec->EnableOutput(false);
{
std::lock_guard<std::mutex> lock(mutex_);
audio_decode_queue_.clear();
}
background_task_->WaitForCompletion();
delete background_task_;
background_task_ = nullptr;
vTaskDelay(pdMS_TO_TICKS(1000));
ota_.StartUpgrade([display](int progress, size_t speed) {
char buffer[64];
snprintf(buffer, sizeof(buffer), "%d%% %zuKB/s", progress, speed / 1024);
display->SetChatMessage("system", buffer);
});
// If upgrade success, the device will reboot and never reach here
display->SetStatus(Lang::Strings::UPGRADE_FAILED);
ESP_LOGI(TAG, "Firmware upgrade failed...");
vTaskDelay(pdMS_TO_TICKS(3000));
Reboot();
return;
}
// No new version, mark the current version as valid
ota_.MarkCurrentVersionValid();
if (ota_.HasActivationCode()) {
// Activation code is valid
SetDeviceState(kDeviceStateActivating);
ShowActivationCode();
// Check again in 60 seconds or until the device is idle
for (int i = 0; i < 60; ++i) {
if (device_state_ == kDeviceStateIdle) {
break;
}
vTaskDelay(pdMS_TO_TICKS(1000));
}
continue;
}
xEventGroupSetBits(event_group_, CHECK_NEW_VERSION_DONE_EVENT);
// Exit the loop if done checking new version
break;
}
}
void Application::ShowActivationCode() {
auto& message = ota_.GetActivationMessage();
auto& code = ota_.GetActivationCode();
struct digit_sound {
char digit;
const std::string_view& sound;
};
static const std::array<digit_sound, 10> digit_sounds{{
digit_sound{'0', Lang::Sounds::P3_0},
digit_sound{'1', Lang::Sounds::P3_1},
digit_sound{'2', Lang::Sounds::P3_2},
digit_sound{'3', Lang::Sounds::P3_3},
digit_sound{'4', Lang::Sounds::P3_4},
digit_sound{'5', Lang::Sounds::P3_5},
digit_sound{'6', Lang::Sounds::P3_6},
digit_sound{'7', Lang::Sounds::P3_7},
digit_sound{'8', Lang::Sounds::P3_8},
digit_sound{'9', Lang::Sounds::P3_9}
}};
// This sentence uses 9KB of SRAM, so we need to wait for it to finish
Alert(Lang::Strings::ACTIVATION, message.c_str(), "happy", Lang::Sounds::P3_ACTIVATION);
for (const auto& digit : code) {
auto it = std::find_if(digit_sounds.begin(), digit_sounds.end(),
[digit](const digit_sound& ds) { return ds.digit == digit; });
if (it != digit_sounds.end()) {
PlaySound(it->sound);
}
}
}
void Application::Alert(const char* status, const char* message, const char* emotion, const std::string_view& sound) {
ESP_LOGW(TAG, "Alert %s: %s [%s]", status, message, emotion);
auto display = Board::GetInstance().GetDisplay();
display->SetStatus(status);
display->SetEmotion(emotion);
display->SetChatMessage("system", message);
if (!sound.empty()) {
ResetDecoder();
PlaySound(sound);
}
}
void Application::DismissAlert() {
if (device_state_ == kDeviceStateIdle) {
auto display = Board::GetInstance().GetDisplay();
display->SetStatus(Lang::Strings::STANDBY);
display->SetEmotion("neutral");
display->SetChatMessage("system", "");
}
}
void Application::PlaySound(const std::string_view& sound) {
// Wait for the previous sound to finish
{
std::unique_lock<std::mutex> lock(mutex_);
audio_decode_cv_.wait(lock, [this]() {
return audio_decode_queue_.empty();
});
}
background_task_->WaitForCompletion();
// The assets are encoded at 16000Hz, 60ms frame duration
SetDecodeSampleRate(16000, 60);
const char* data = sound.data();
size_t size = sound.size();
for (const char* p = data; p < data + size; ) {
auto p3 = (BinaryProtocol3*)p;
p += sizeof(BinaryProtocol3);
auto payload_size = ntohs(p3->payload_size);
std::vector<uint8_t> opus;
opus.resize(payload_size);
memcpy(opus.data(), p3->payload, payload_size);
p += payload_size;
std::lock_guard<std::mutex> lock(mutex_);
audio_decode_queue_.emplace_back(std::move(opus));
}
}
void Application::ToggleChatState() {
if (device_state_ == kDeviceStateActivating) {
SetDeviceState(kDeviceStateIdle);
return;
}
if (!protocol_) {
ESP_LOGE(TAG, "Protocol not initialized");
return;
}
if (device_state_ == kDeviceStateIdle) {
Schedule([this]() {
SetDeviceState(kDeviceStateConnecting);
if (!protocol_->OpenAudioChannel()) {
return;
}
SetListeningMode(realtime_chat_enabled_ ? kListeningModeRealtime : kListeningModeAutoStop);
});
} else if (device_state_ == kDeviceStateSpeaking) {
Schedule([this]() {
AbortSpeaking(kAbortReasonNone);
});
} else if (device_state_ == kDeviceStateListening) {
Schedule([this]() {
protocol_->CloseAudioChannel();
});
}
}
void Application::StartListening() {
if (device_state_ == kDeviceStateActivating) {
SetDeviceState(kDeviceStateIdle);
return;
}
if (!protocol_) {
ESP_LOGE(TAG, "Protocol not initialized");
return;
}
if (device_state_ == kDeviceStateIdle) {
Schedule([this]() {
if (!protocol_->IsAudioChannelOpened()) {
SetDeviceState(kDeviceStateConnecting);
if (!protocol_->OpenAudioChannel()) {
return;
}
}
SetListeningMode(kListeningModeManualStop);
});
} else if (device_state_ == kDeviceStateSpeaking) {
Schedule([this]() {
AbortSpeaking(kAbortReasonNone);
SetListeningMode(kListeningModeManualStop);
});
}
}
void Application::StopListening() {
const std::array<int, 3> valid_states = {
kDeviceStateListening,
kDeviceStateSpeaking,
kDeviceStateIdle,
};
// If not valid, do nothing
if (std::find(valid_states.begin(), valid_states.end(), device_state_) == valid_states.end()) {
return;
}
Schedule([this]() {
if (device_state_ == kDeviceStateListening) {
protocol_->SendStopListening();
SetDeviceState(kDeviceStateIdle);
}
});
}
void Application::Start() {
auto& board = Board::GetInstance();
SetDeviceState(kDeviceStateStarting);
/* Setup the display */
auto display = board.GetDisplay();
/* Setup the audio codec */
auto codec = board.GetAudioCodec();
opus_decoder_ = std::make_unique<OpusDecoderWrapper>(codec->output_sample_rate(), 1, OPUS_FRAME_DURATION_MS);
opus_encoder_ = std::make_unique<OpusEncoderWrapper>(16000, 1, OPUS_FRAME_DURATION_MS);
if (realtime_chat_enabled_) {
ESP_LOGI(TAG, "Realtime chat enabled, setting opus encoder complexity to 0");
opus_encoder_->SetComplexity(0);
} else if (board.GetBoardType() == "ml307") {
ESP_LOGI(TAG, "ML307 board detected, setting opus encoder complexity to 5");
opus_encoder_->SetComplexity(5);
} else {
ESP_LOGI(TAG, "WiFi board detected, setting opus encoder complexity to 3");
opus_encoder_->SetComplexity(3);
}
if (codec->input_sample_rate() != 16000) {
input_resampler_.Configure(codec->input_sample_rate(), 16000);
reference_resampler_.Configure(codec->input_sample_rate(), 16000);
}
codec->Start();
xTaskCreatePinnedToCore([](void* arg) {
Application* app = (Application*)arg;
app->AudioLoop();
vTaskDelete(NULL);
}, "audio_loop", 4096 * 2, this, 8, &audio_loop_task_handle_, realtime_chat_enabled_ ? 1 : 0);
/* Wait for the network to be ready */
board.StartNetwork();
// Check for new firmware version or get the MQTT broker address
display->SetStatus(Lang::Strings::CHECKING_NEW_VERSION);
CheckNewVersion();
// Initialize the protocol
display->SetStatus(Lang::Strings::LOADING_PROTOCOL);
#ifdef CONFIG_CONNECTION_TYPE_WEBSOCKET
protocol_ = std::make_unique<WebsocketProtocol>();
#else
protocol_ = std::make_unique<MqttProtocol>();
#endif
protocol_->OnNetworkError([this](const std::string& message) {
SetDeviceState(kDeviceStateIdle);
Alert(Lang::Strings::ERROR, message.c_str(), "sad", Lang::Sounds::P3_EXCLAMATION);
});
protocol_->OnIncomingAudio([this](std::vector<uint8_t>&& data) {
const int max_packets_in_queue = 300 / OPUS_FRAME_DURATION_MS;
std::lock_guard<std::mutex> lock(mutex_);
if (audio_decode_queue_.size() < max_packets_in_queue) {
audio_decode_queue_.emplace_back(std::move(data));
}
});
protocol_->OnAudioChannelOpened([this, codec, &board]() {
board.SetPowerSaveMode(false);
if (protocol_->server_sample_rate() != codec->output_sample_rate()) {
ESP_LOGW(TAG, "Server sample rate %d does not match device output sample rate %d, resampling may cause distortion",
protocol_->server_sample_rate(), codec->output_sample_rate());
}
SetDecodeSampleRate(protocol_->server_sample_rate(), protocol_->server_frame_duration());
auto& thing_manager = iot::ThingManager::GetInstance();
protocol_->SendIotDescriptors(thing_manager.GetDescriptorsJson());
std::string states;
if (thing_manager.GetStatesJson(states, false)) {
protocol_->SendIotStates(states);
}
});
protocol_->OnAudioChannelClosed([this, &board]() {
board.SetPowerSaveMode(true);
Schedule([this]() {
auto display = Board::GetInstance().GetDisplay();
display->SetChatMessage("system", "");
SetDeviceState(kDeviceStateIdle);
});
});
protocol_->OnIncomingJson([this, display](const cJSON* root) {
// Parse JSON data
auto type = cJSON_GetObjectItem(root, "type");
if (strcmp(type->valuestring, "tts") == 0) {
auto state = cJSON_GetObjectItem(root, "state");
if (strcmp(state->valuestring, "start") == 0) {
Schedule([this]() {
aborted_ = false;
if (device_state_ == kDeviceStateIdle || device_state_ == kDeviceStateListening) {
SetDeviceState(kDeviceStateSpeaking);
}
});
} else if (strcmp(state->valuestring, "stop") == 0) {
Schedule([this]() {
background_task_->WaitForCompletion();
if (device_state_ == kDeviceStateSpeaking) {
if (listening_mode_ == kListeningModeManualStop) {
SetDeviceState(kDeviceStateIdle);
} else {
SetDeviceState(kDeviceStateListening);
}
}
});
} else if (strcmp(state->valuestring, "sentence_start") == 0) {
auto text = cJSON_GetObjectItem(root, "text");
if (text != NULL) {
ESP_LOGI(TAG, "<< %s", text->valuestring);
Schedule([this, display, message = std::string(text->valuestring)]() {
display->SetChatMessage("assistant", message.c_str());
});
}
}
} else if (strcmp(type->valuestring, "stt") == 0) {
auto text = cJSON_GetObjectItem(root, "text");
if (text != NULL) {
ESP_LOGI(TAG, ">> %s", text->valuestring);
Schedule([this, display, message = std::string(text->valuestring)]() {
display->SetChatMessage("user", message.c_str());
});
}
} else if (strcmp(type->valuestring, "llm") == 0) {
auto emotion = cJSON_GetObjectItem(root, "emotion");
if (emotion != NULL) {
Schedule([this, display, emotion_str = std::string(emotion->valuestring)]() {
display->SetEmotion(emotion_str.c_str());
});
}
} else if (strcmp(type->valuestring, "iot") == 0) {
auto commands = cJSON_GetObjectItem(root, "commands");
if (commands != NULL) {
auto& thing_manager = iot::ThingManager::GetInstance();
for (int i = 0; i < cJSON_GetArraySize(commands); ++i) {
auto command = cJSON_GetArrayItem(commands, i);
thing_manager.Invoke(command);
}
}
}
});
protocol_->Start();
#if CONFIG_USE_AUDIO_PROCESSOR
audio_processor_.Initialize(codec, realtime_chat_enabled_);
audio_processor_.OnOutput([this](std::vector<int16_t>&& data) {
background_task_->Schedule([this, data = std::move(data)]() mutable {
if (protocol_->IsAudioChannelBusy()) {
return;
}
opus_encoder_->Encode(std::move(data), [this](std::vector<uint8_t>&& opus) {
Schedule([this, opus = std::move(opus)]() {
protocol_->SendAudio(opus);
});
});
});
});
audio_processor_.OnVadStateChange([this](bool speaking) {
if (device_state_ == kDeviceStateListening) {
Schedule([this, speaking]() {
if (speaking) {
voice_detected_ = true;
} else {
voice_detected_ = false;
}
auto led = Board::GetInstance().GetLed();
led->OnStateChanged();
});
}
});
#endif
#if CONFIG_USE_WAKE_WORD_DETECT
wake_word_detect_.Initialize(codec);
wake_word_detect_.OnWakeWordDetected([this](const std::string& wake_word) {
Schedule([this, &wake_word]() {
if (device_state_ == kDeviceStateIdle) {
SetDeviceState(kDeviceStateConnecting);
wake_word_detect_.EncodeWakeWordData();
if (!protocol_->OpenAudioChannel()) {
wake_word_detect_.StartDetection();
return;
}
std::vector<uint8_t> opus;
// Encode and send the wake word data to the server
while (wake_word_detect_.GetWakeWordOpus(opus)) {
protocol_->SendAudio(opus);
}
// Set the chat state to wake word detected
protocol_->SendWakeWordDetected(wake_word);
ESP_LOGI(TAG, "Wake word detected: %s", wake_word.c_str());
SetListeningMode(realtime_chat_enabled_ ? kListeningModeRealtime : kListeningModeAutoStop);
} else if (device_state_ == kDeviceStateSpeaking) {
AbortSpeaking(kAbortReasonWakeWordDetected);
} else if (device_state_ == kDeviceStateActivating) {
SetDeviceState(kDeviceStateIdle);
}
});
});
wake_word_detect_.StartDetection();
#endif
// Wait for the new version check to finish
xEventGroupWaitBits(event_group_, CHECK_NEW_VERSION_DONE_EVENT, pdTRUE, pdFALSE, portMAX_DELAY);
SetDeviceState(kDeviceStateIdle);
std::string message = std::string(Lang::Strings::VERSION) + ota_.GetCurrentVersion();
display->ShowNotification(message.c_str());
display->SetChatMessage("system", "");
// Play the success sound to indicate the device is ready
ResetDecoder();
PlaySound(Lang::Sounds::P3_SUCCESS);
// Enter the main event loop
MainEventLoop();
}
void Application::OnClockTimer() {
clock_ticks_++;
// Print the debug info every 10 seconds
if (clock_ticks_ % 10 == 0) {
// SystemInfo::PrintRealTimeStats(pdMS_TO_TICKS(1000));
int free_sram = heap_caps_get_free_size(MALLOC_CAP_INTERNAL);
int min_free_sram = heap_caps_get_minimum_free_size(MALLOC_CAP_INTERNAL);
ESP_LOGI(TAG, "Free internal: %u minimal internal: %u", free_sram, min_free_sram);
// If we have synchronized server time, set the status to clock "HH:MM" if the device is idle
if (ota_.HasServerTime()) {
if (device_state_ == kDeviceStateIdle) {
Schedule([this]() {
// Set status to clock "HH:MM"
time_t now = time(NULL);
char time_str[64];
strftime(time_str, sizeof(time_str), "%H:%M ", localtime(&now));
Board::GetInstance().GetDisplay()->SetStatus(time_str);
});
}
}
}
}
// Add a async task to MainLoop
void Application::Schedule(std::function<void()> callback) {
{
std::lock_guard<std::mutex> lock(mutex_);
main_tasks_.push_back(std::move(callback));
}
xEventGroupSetBits(event_group_, SCHEDULE_EVENT);
}
// The Main Event Loop controls the chat state and websocket connection
// If other tasks need to access the websocket or chat state,
// they should use Schedule to call this function
void Application::MainEventLoop() {
while (true) {
auto bits = xEventGroupWaitBits(event_group_, SCHEDULE_EVENT, pdTRUE, pdFALSE, portMAX_DELAY);
if (bits & SCHEDULE_EVENT) {
std::unique_lock<std::mutex> lock(mutex_);
std::list<std::function<void()>> tasks = std::move(main_tasks_);
lock.unlock();
for (auto& task : tasks) {
task();
}
}
}
}
// The Audio Loop is used to input and output audio data
void Application::AudioLoop() {
auto codec = Board::GetInstance().GetAudioCodec();
while (true) {
OnAudioInput();
if (codec->output_enabled()) {
OnAudioOutput();
}
}
}
void Application::OnAudioOutput() {
if (busy_decoding_audio_) {
return;
}
auto now = std::chrono::steady_clock::now();
auto codec = Board::GetInstance().GetAudioCodec();
const int max_silence_seconds = 10;
std::unique_lock<std::mutex> lock(mutex_);
if (audio_decode_queue_.empty()) {
// Disable the output if there is no audio data for a long time
if (device_state_ == kDeviceStateIdle) {
auto duration = std::chrono::duration_cast<std::chrono::seconds>(now - last_output_time_).count();
if (duration > max_silence_seconds) {
codec->EnableOutput(false);
}
}
return;
}
if (device_state_ == kDeviceStateListening) {
audio_decode_queue_.clear();
audio_decode_cv_.notify_all();
return;
}
auto opus = std::move(audio_decode_queue_.front());
audio_decode_queue_.pop_front();
lock.unlock();
audio_decode_cv_.notify_all();
busy_decoding_audio_ = true;
background_task_->Schedule([this, codec, opus = std::move(opus)]() mutable {
busy_decoding_audio_ = false;
if (aborted_) {
return;
}
std::vector<int16_t> pcm;
if (!opus_decoder_->Decode(std::move(opus), pcm)) {
return;
}
// Resample if the sample rate is different
if (opus_decoder_->sample_rate() != codec->output_sample_rate()) {
int target_size = output_resampler_.GetOutputSamples(pcm.size());
std::vector<int16_t> resampled(target_size);
output_resampler_.Process(pcm.data(), pcm.size(), resampled.data());
pcm = std::move(resampled);
}
codec->OutputData(pcm);
last_output_time_ = std::chrono::steady_clock::now();
});
}
void Application::OnAudioInput() {
#if CONFIG_USE_WAKE_WORD_DETECT
if (wake_word_detect_.IsDetectionRunning()) {
std::vector<int16_t> data;
ReadAudio(data, 16000, wake_word_detect_.GetFeedSize());
wake_word_detect_.Feed(data);
return;
}
#endif
#if CONFIG_USE_AUDIO_PROCESSOR
if (audio_processor_.IsRunning()) {
std::vector<int16_t> data;
ReadAudio(data, 16000, audio_processor_.GetFeedSize());
audio_processor_.Feed(data);
return;
}
#else
if (device_state_ == kDeviceStateListening) {
std::vector<int16_t> data;
ReadAudio(data, 16000, 30 * 16000 / 1000);
background_task_->Schedule([this, data = std::move(data)]() mutable {
if (protocol_->IsAudioChannelBusy()) {
return;
}
opus_encoder_->Encode(std::move(data), [this](std::vector<uint8_t>&& opus) {
Schedule([this, opus = std::move(opus)]() {
protocol_->SendAudio(opus);
});
});
});
return;
}
#endif
vTaskDelay(pdMS_TO_TICKS(30));
}
void Application::ReadAudio(std::vector<int16_t>& data, int sample_rate, int samples) {
auto codec = Board::GetInstance().GetAudioCodec();
if (codec->input_sample_rate() != sample_rate) {
data.resize(samples * codec->input_sample_rate() / sample_rate);
if (!codec->InputData(data)) {
return;
}
if (codec->input_channels() == 2) {
auto mic_channel = std::vector<int16_t>(data.size() / 2);
auto reference_channel = std::vector<int16_t>(data.size() / 2);
for (size_t i = 0, j = 0; i < mic_channel.size(); ++i, j += 2) {
mic_channel[i] = data[j];
reference_channel[i] = data[j + 1];
}
auto resampled_mic = std::vector<int16_t>(input_resampler_.GetOutputSamples(mic_channel.size()));
auto resampled_reference = std::vector<int16_t>(reference_resampler_.GetOutputSamples(reference_channel.size()));
input_resampler_.Process(mic_channel.data(), mic_channel.size(), resampled_mic.data());
reference_resampler_.Process(reference_channel.data(), reference_channel.size(), resampled_reference.data());
data.resize(resampled_mic.size() + resampled_reference.size());
for (size_t i = 0, j = 0; i < resampled_mic.size(); ++i, j += 2) {
data[j] = resampled_mic[i];
data[j + 1] = resampled_reference[i];
}
} else {
auto resampled = std::vector<int16_t>(input_resampler_.GetOutputSamples(data.size()));
input_resampler_.Process(data.data(), data.size(), resampled.data());
data = std::move(resampled);
}
} else {
data.resize(samples);
if (!codec->InputData(data)) {
return;
}
}
}
void Application::AbortSpeaking(AbortReason reason) {
ESP_LOGI(TAG, "Abort speaking");
aborted_ = true;
protocol_->SendAbortSpeaking(reason);
}
void Application::SetListeningMode(ListeningMode mode) {
listening_mode_ = mode;
SetDeviceState(kDeviceStateListening);
}
void Application::SetDeviceState(DeviceState state) {
if (device_state_ == state) {
return;
}
clock_ticks_ = 0;
auto previous_state = device_state_;
device_state_ = state;
ESP_LOGI(TAG, "STATE: %s", STATE_STRINGS[device_state_]);
// The state is changed, wait for all background tasks to finish
background_task_->WaitForCompletion();
auto& board = Board::GetInstance();
auto display = board.GetDisplay();
auto led = board.GetLed();
led->OnStateChanged();
switch (state) {
case kDeviceStateUnknown:
case kDeviceStateIdle:
display->SetStatus(Lang::Strings::STANDBY);
display->SetEmotion("neutral");
#if CONFIG_USE_AUDIO_PROCESSOR
audio_processor_.Stop();
#endif
#if CONFIG_USE_WAKE_WORD_DETECT
wake_word_detect_.StartDetection();
#endif
break;
case kDeviceStateConnecting:
display->SetStatus(Lang::Strings::CONNECTING);
display->SetEmotion("neutral");
display->SetChatMessage("system", "");
break;
case kDeviceStateListening:
display->SetStatus(Lang::Strings::LISTENING);
display->SetEmotion("neutral");
// Update the IoT states before sending the start listening command
UpdateIotStates();
// Make sure the audio processor is running
#if CONFIG_USE_AUDIO_PROCESSOR
if (!audio_processor_.IsRunning()) {
#else
if (true) {
#endif
// Send the start listening command
protocol_->SendStartListening(listening_mode_);
if (listening_mode_ == kListeningModeAutoStop && previous_state == kDeviceStateSpeaking) {
// FIXME: Wait for the speaker to empty the buffer
vTaskDelay(pdMS_TO_TICKS(120));
}
opus_encoder_->ResetState();
#if CONFIG_USE_WAKE_WORD_DETECT
wake_word_detect_.StopDetection();
#endif
#if CONFIG_USE_AUDIO_PROCESSOR
audio_processor_.Start();
#endif
}
break;
case kDeviceStateSpeaking:
display->SetStatus(Lang::Strings::SPEAKING);
if (listening_mode_ != kListeningModeRealtime) {
#if CONFIG_USE_AUDIO_PROCESSOR
audio_processor_.Stop();
#endif
#if CONFIG_USE_WAKE_WORD_DETECT
wake_word_detect_.StartDetection();
#endif
}
ResetDecoder();
break;
default:
// Do nothing
break;
}
}
void Application::ResetDecoder() {
std::lock_guard<std::mutex> lock(mutex_);
opus_decoder_->ResetState();
audio_decode_queue_.clear();
audio_decode_cv_.notify_all();
last_output_time_ = std::chrono::steady_clock::now();
auto codec = Board::GetInstance().GetAudioCodec();
codec->EnableOutput(true);
}
void Application::SetDecodeSampleRate(int sample_rate, int frame_duration) {
if (opus_decoder_->sample_rate() == sample_rate && opus_decoder_->duration_ms() == frame_duration) {
return;
}
opus_decoder_.reset();
opus_decoder_ = std::make_unique<OpusDecoderWrapper>(sample_rate, 1, frame_duration);
auto codec = Board::GetInstance().GetAudioCodec();
if (opus_decoder_->sample_rate() != codec->output_sample_rate()) {
ESP_LOGI(TAG, "Resampling audio from %d to %d", opus_decoder_->sample_rate(), codec->output_sample_rate());
output_resampler_.Configure(opus_decoder_->sample_rate(), codec->output_sample_rate());
}
}
void Application::UpdateIotStates() {
auto& thing_manager = iot::ThingManager::GetInstance();
std::string states;
if (thing_manager.GetStatesJson(states, true)) {
protocol_->SendIotStates(states);
}
}
void Application::Reboot() {
ESP_LOGI(TAG, "Rebooting...");
esp_restart();
}
void Application::WakeWordInvoke(const std::string& wake_word) {
if (device_state_ == kDeviceStateIdle) {
ToggleChatState();
Schedule([this, wake_word]() {
if (protocol_) {
protocol_->SendWakeWordDetected(wake_word);
}
});
} else if (device_state_ == kDeviceStateSpeaking) {
Schedule([this]() {
AbortSpeaking(kAbortReasonNone);
});
} else if (device_state_ == kDeviceStateListening) {
Schedule([this]() {
if (protocol_) {
protocol_->CloseAudioChannel();
}
});
}
}
bool Application::CanEnterSleepMode() {
if (device_state_ != kDeviceStateIdle) {
return false;
}
if (protocol_ && protocol_->IsAudioChannelOpened()) {
return false;
}
// Now it is safe to enter sleep mode
return true;
}