You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

61 lines
1.9 KiB

# D:\anaconda3\envs\py310\Scripts\pip.exe install pymilvus
from pymilvus import connections, FieldSchema, CollectionSchema, DataType, Collection, utility
# 1. 连接 Milvus
connections.connect("default", host="10.10.14.101", port="19530")
# 2. 定义集合的字段和模式
fields = [
FieldSchema(name="id", dtype=DataType.INT64, is_primary=True, auto_id=True),
FieldSchema(name="embedding", dtype=DataType.FLOAT_VECTOR, dim=128)
]
schema = CollectionSchema(fields, description="Simple demo collection")
# 3. 创建集合
collection_name = "demo_collection"
if utility.has_collection(collection_name):
utility.drop_collection(collection_name) # 如果集合已存在,先删除
collection = Collection(name=collection_name, schema=schema)
# 4. 插入数据
import random
data = [
[random.random() for _ in range(128)], # 第一个向量
[random.random() for _ in range(128)], # 第二个向量
[random.random() for _ in range(128)] # 第三个向量
]
entities = [data] # 插入的数据
collection.insert(entities)
# 5. 创建索引
index_params = {
"index_type": "IVF_FLAT", # 索引类型
"metric_type": "L2", # 距离度量方式
"params": {"nlist": 128} # 索引参数
}
collection.create_index("embedding", index_params)
# 6. 加载集合到内存
collection.load()
# 7. 查询数据
query_vector = [random.random() for _ in range(128)] # 查询向量
search_params = {
"metric_type": "L2",
"params": {"nprobe": 10} # 查询参数
}
results = collection.search(
data=[query_vector], # 查询向量
anns_field="embedding", # 查询字段
param=search_params,
limit=2 # 返回最相似的 2 个结果
)
# 8. 输出查询结果
for hits in results:
for hit in hits:
print(f"ID: {hit.id}, Distance: {hit.distance}")
# 9. 关闭连接
connections.disconnect("default")