You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
61 lines
1.9 KiB
61 lines
1.9 KiB
# D:\anaconda3\envs\py310\Scripts\pip.exe install pymilvus
|
|
from pymilvus import connections, FieldSchema, CollectionSchema, DataType, Collection, utility
|
|
|
|
# 1. 连接 Milvus
|
|
connections.connect("default", host="10.10.14.101", port="19530")
|
|
|
|
# 2. 定义集合的字段和模式
|
|
fields = [
|
|
FieldSchema(name="id", dtype=DataType.INT64, is_primary=True, auto_id=True),
|
|
FieldSchema(name="embedding", dtype=DataType.FLOAT_VECTOR, dim=128)
|
|
]
|
|
schema = CollectionSchema(fields, description="Simple demo collection")
|
|
|
|
# 3. 创建集合
|
|
collection_name = "demo_collection"
|
|
if utility.has_collection(collection_name):
|
|
utility.drop_collection(collection_name) # 如果集合已存在,先删除
|
|
|
|
collection = Collection(name=collection_name, schema=schema)
|
|
|
|
# 4. 插入数据
|
|
import random
|
|
data = [
|
|
[random.random() for _ in range(128)], # 第一个向量
|
|
[random.random() for _ in range(128)], # 第二个向量
|
|
[random.random() for _ in range(128)] # 第三个向量
|
|
]
|
|
entities = [data] # 插入的数据
|
|
collection.insert(entities)
|
|
|
|
# 5. 创建索引
|
|
index_params = {
|
|
"index_type": "IVF_FLAT", # 索引类型
|
|
"metric_type": "L2", # 距离度量方式
|
|
"params": {"nlist": 128} # 索引参数
|
|
}
|
|
collection.create_index("embedding", index_params)
|
|
|
|
# 6. 加载集合到内存
|
|
collection.load()
|
|
|
|
# 7. 查询数据
|
|
query_vector = [random.random() for _ in range(128)] # 查询向量
|
|
search_params = {
|
|
"metric_type": "L2",
|
|
"params": {"nprobe": 10} # 查询参数
|
|
}
|
|
results = collection.search(
|
|
data=[query_vector], # 查询向量
|
|
anns_field="embedding", # 查询字段
|
|
param=search_params,
|
|
limit=2 # 返回最相似的 2 个结果
|
|
)
|
|
|
|
# 8. 输出查询结果
|
|
for hits in results:
|
|
for hit in hits:
|
|
print(f"ID: {hit.id}, Distance: {hit.distance}")
|
|
|
|
# 9. 关闭连接
|
|
connections.disconnect("default") |