You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

117 lines
3.8 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import uvicorn
from fastapi import FastAPI, Body
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse, PlainTextResponse
import asyncio
import socket
from openai import OpenAI
from MarkdownToJsonUtil import *
# 阿里云中用来调用 deepseek v3 的密钥
MODEL_API_KEY = "sk-01d13a39e09844038322108ecdbd1bbc"
MODEL_NAME = "deepseek-v3"
#MODEL_NAME = "qwen-plus"
# 初始化 OpenAI 客户端
client = OpenAI(
api_key=MODEL_API_KEY,
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
)
# 获取本机所有 IPv4 地址
def get_local_ips():
ips = []
hostname = socket.gethostname()
try:
# 获取所有 IP 地址
addrs = socket.getaddrinfo(hostname, None, family=socket.AF_INET) # 只获取 IPv4 地址
for addr in addrs:
ip = addr[4][0]
if ip not in ips:
ips.append(ip)
except Exception as e:
print(f"获取 IP 地址失败: {e}")
return ips
# 流式生成数据的函数
async def generate_stream_markdown(course_name: str):
# 调用阿里云 API启用流式响应
stream = client.chat.completions.create(
model=MODEL_NAME,
messages=[
{'role': 'system', 'content': '你是一个教学经验丰富的基础教育教师'},
{'role': 'user', 'content': '帮我设计一下' + course_name + '的课件提纲用markdown格式返回。不要返回 ```markdown 或者 ``` 这样的内容!'}
],
stream=True, # 启用流式响应
timeout=6000,
)
# 逐字返回数据
for chunk in stream:
if chunk.choices[0].delta.content:
for char in chunk.choices[0].delta.content:
yield char.encode("utf-8")
await asyncio.sleep(0.05) # 控制逐字输出的速度
app = FastAPI()
# 添加 CORS 中间件
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# 根路由,返回提示信息
@app.get("/")
def root():
return PlainTextResponse("Hello ApiStream")
@app.post("/api/tools/aippt_outline") # 仅支持 POST 方法
async def aippt_outline(
course_name: str = Body(..., embed=True, description="课程名称") # 从请求体中获取 course_name
):
# 返回流式响应
return StreamingResponse(
generate_stream_markdown(course_name),
media_type="text/event-stream",
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"Access-Control-Allow-Origin": "*",
"X-Accel-Buffering": "no"
}
)
@app.post("/api/tools/aippt") # 修改为 POST 方法
async def aippt(content: str = Body(..., embed=True, description="Markdown 内容")): # 使用 Body 接收请求体参数
return StreamingResponse(
getMyJson(content), # 传入 content
media_type="text/plain", # 使用 text/plain 格式
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"Access-Control-Allow-Origin": "*",
"X-Accel-Buffering": "no",
"Content-Type": "text/plain; charset=utf-8" # 明确设置 Content-Type
}
)
# 运行应用
if __name__ == "__main__":
# 获取本机所有 IPv4 地址
ips = get_local_ips()
if not ips:
print("无法获取本机 IP 地址,使用默认地址 127.0.0.1")
ips = ["127.0.0.1"]
# 打印所有 IP 地址
print("服务将在以下 IP 地址上运行:")
for ip in ips:
print(f"http://{ip}:5173")
# 启动 FastAPI 应用,绑定到所有 IP 地址
uvicorn.run(app, host="0.0.0.0", port=5173)