|
|
# pip install gensim
|
|
|
import time
|
|
|
from WxMini.Milvus.Utils.MilvusCollectionManager import MilvusCollectionManager
|
|
|
from WxMini.Milvus.Utils.MilvusConnectionPool import *
|
|
|
from WxMini.Milvus.Config.MulvusConfig import *
|
|
|
from gensim.models import KeyedVectors
|
|
|
# 加载预训练的 Word2Vec 模型
|
|
|
model_path = "D:/Tencent_AILab_ChineseEmbedding/Tencent_AILab_ChineseEmbedding.txt" # 替换为你的 Word2Vec 模型路径
|
|
|
# 参考文档:使用gensim之KeyedVectors操作词向量模型
|
|
|
# https://www.cnblogs.com/bill-h/p/14655224.html
|
|
|
# 读取词向量模型(限定前10000个词)
|
|
|
model = KeyedVectors.load_word2vec_format(model_path, binary=False, limit=10000)
|
|
|
|
|
|
# 将文本转换为嵌入向量
|
|
|
def text_to_embedding(text):
|
|
|
words = text.split()
|
|
|
embeddings = [model[word] for word in words if word in model]
|
|
|
if embeddings:
|
|
|
return sum(embeddings) / len(embeddings) # 取词向量的平均值
|
|
|
else:
|
|
|
return [0.0] * model.vector_size # 如果文本中没有有效词,返回零向量
|
|
|
|
|
|
# 1. 使用连接池管理 Milvus 连接
|
|
|
milvus_pool = MilvusConnectionPool(host=MS_HOST, port=MS_PORT, max_connections=MS_MAX_CONNECTIONS)
|
|
|
|
|
|
# 2. 从连接池中获取一个连接
|
|
|
connection = milvus_pool.get_connection()
|
|
|
|
|
|
# 3. 初始化集合管理器
|
|
|
collection_name = MS_COLLECTION_NAME
|
|
|
collection_manager = MilvusCollectionManager(collection_name)
|
|
|
|
|
|
# 4. 加载集合到内存
|
|
|
collection_manager.load_collection()
|
|
|
|
|
|
# 5. 输入一句话
|
|
|
input_text = input("请输入一句话:") # 例如:“我今天心情不太好”
|
|
|
|
|
|
# 6. 将文本转换为嵌入向量
|
|
|
current_embedding = text_to_embedding(input_text)
|
|
|
|
|
|
# 7. 查询与当前对话最相关的历史对话
|
|
|
search_params = {
|
|
|
"metric_type": "L2", # 使用 L2 距离度量方式
|
|
|
"params": {"nprobe": 100} # 设置 IVF_FLAT 的 nprobe 参数
|
|
|
}
|
|
|
start_time = time.time()
|
|
|
results = collection_manager.search(current_embedding, search_params, limit=5) # 返回 5 条结果
|
|
|
end_time = time.time()
|
|
|
|
|
|
# 8. 输出查询结果
|
|
|
print("最相关的历史对话:")
|
|
|
if results:
|
|
|
for hits in results:
|
|
|
for hit in hits:
|
|
|
try:
|
|
|
text = collection_manager.query_text_by_id(hit.id)
|
|
|
print(f"- {text} (距离: {hit.distance})")
|
|
|
except Exception as e:
|
|
|
print(f"查询失败: {e}")
|
|
|
else:
|
|
|
print("未找到相关历史对话,请检查查询参数或数据。")
|
|
|
|
|
|
# 9. 输出查询耗时
|
|
|
print(f"查询耗时: {end_time - start_time:.4f} 秒")
|
|
|
|
|
|
# 10. 释放连接
|
|
|
milvus_pool.release_connection(connection)
|
|
|
|
|
|
# 11. 关闭连接池
|
|
|
milvus_pool.close() |