You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

510 lines
20 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import time
import aiohttp
import asyncio
from tabulate import tabulate
from typing import Dict, List
from core.utils.llm import create_instance as create_llm_instance
from core.utils.tts import create_instance as create_tts_instance
import statistics
from config.settings import load_config
import inspect
import os
import logging
# 设置全局日志级别为WARNING抑制INFO级别日志
logging.basicConfig(level=logging.WARNING)
class AsyncPerformanceTester:
def __init__(self):
self.config = load_config()
self.test_sentences = self.config.get("module_test", {}).get(
"test_sentences",
[
"你好,请介绍一下你自己",
"What's the weather like today?",
"请用100字概括量子计算的基本原理和应用前景",
],
)
self.results = {"llm": {}, "tts": {}, "combinations": []}
async def _check_ollama_service(self, base_url: str, model_name: str) -> bool:
"""异步检查Ollama服务状态"""
async with aiohttp.ClientSession() as session:
try:
# 检查服务是否可用
async with session.get(f"{base_url}/api/version") as response:
if response.status != 200:
print(f"🚫 Ollama服务未启动或无法访问: {base_url}")
return False
# 检查模型是否存在
async with session.get(f"{base_url}/api/tags") as response:
if response.status == 200:
data = await response.json()
models = data.get("models", [])
if not any(model["name"] == model_name for model in models):
print(
f"🚫 Ollama模型 {model_name} 未找到,请先使用 ollama pull {model_name} 下载"
)
return False
else:
print(f"🚫 无法获取Ollama模型列表")
return False
return True
except Exception as e:
print(f"🚫 无法连接到Ollama服务: {str(e)}")
return False
async def _test_tts(self, tts_name: str, config: Dict) -> Dict:
"""异步测试单个TTS性能"""
try:
logging.getLogger("core.providers.tts.base").setLevel(logging.WARNING)
token_fields = ["access_token", "api_key", "token"]
if any(
field in config
and any(x in config[field] for x in ["你的", "placeholder"])
for field in token_fields
):
print(f"⏭️ TTS {tts_name} 未配置access_token/api_key已跳过")
return {"name": tts_name, "type": "tts", "errors": 1}
module_type = config.get("type", tts_name)
tts = create_tts_instance(module_type, config, delete_audio_file=True)
print(f"🎵 测试 TTS: {tts_name}")
tmp_file = tts.generate_filename()
await tts.text_to_speak("连接测试", tmp_file)
if not tmp_file or not os.path.exists(tmp_file):
print(f"{tts_name} 连接失败")
return {"name": tts_name, "type": "tts", "errors": 1}
total_time = 0
test_count = len(self.test_sentences[:2])
for i, sentence in enumerate(self.test_sentences[:2], 1):
start = time.time()
tmp_file = tts.generate_filename()
await tts.text_to_speak(sentence, tmp_file)
duration = time.time() - start
total_time += duration
if tmp_file and os.path.exists(tmp_file):
print(f"{tts_name} [{i}/{test_count}]")
else:
print(f"{tts_name} [{i}/{test_count}]")
return {"name": tts_name, "type": "tts", "errors": 1}
return {
"name": tts_name,
"type": "tts",
"avg_time": total_time / test_count,
"errors": 0,
}
except Exception as e:
print(f"⚠️ {tts_name} 测试失败: {str(e)}")
return {"name": tts_name, "type": "tts", "errors": 1}
async def _test_llm(self, llm_name: str, config: Dict) -> Dict:
"""异步测试单个LLM性能"""
try:
# 对于Ollama跳过api_key检查并进行特殊处理
if llm_name == "Ollama":
base_url = config.get("base_url", "http://localhost:11434")
model_name = config.get("model_name")
if not model_name:
print(f"🚫 Ollama未配置model_name")
return {"name": llm_name, "type": "llm", "errors": 1}
if not await self._check_ollama_service(base_url, model_name):
return {"name": llm_name, "type": "llm", "errors": 1}
else:
if "api_key" in config and any(
x in config["api_key"] for x in ["你的", "placeholder", "sk-xxx"]
):
print(f"🚫 跳过未配置的LLM: {llm_name}")
return {"name": llm_name, "type": "llm", "errors": 1}
# 获取实际类型(兼容旧配置)
module_type = config.get("type", llm_name)
llm = create_llm_instance(module_type, config)
# 统一使用UTF-8编码
test_sentences = [
s.encode("utf-8").decode("utf-8") for s in self.test_sentences
]
# 创建所有句子的测试任务
sentence_tasks = []
for sentence in test_sentences:
sentence_tasks.append(
self._test_single_sentence(llm_name, llm, sentence)
)
# 并发执行所有句子测试
sentence_results = await asyncio.gather(*sentence_tasks)
# 处理结果
valid_results = [r for r in sentence_results if r is not None]
if not valid_results:
print(f"⚠️ {llm_name} 无有效数据,可能配置错误")
return {"name": llm_name, "type": "llm", "errors": 1}
first_token_times = [r["first_token_time"] for r in valid_results]
response_times = [r["response_time"] for r in valid_results]
# 过滤异常数据
mean = statistics.mean(response_times)
stdev = statistics.stdev(response_times) if len(response_times) > 1 else 0
filtered_times = [t for t in response_times if t <= mean + 3 * stdev]
if len(filtered_times) < len(test_sentences) * 0.5:
print(f"⚠️ {llm_name} 有效数据不足,可能网络不稳定")
return {"name": llm_name, "type": "llm", "errors": 1}
return {
"name": llm_name,
"type": "llm",
"avg_response": sum(response_times) / len(response_times),
"avg_first_token": sum(first_token_times) / len(first_token_times),
"std_first_token": (
statistics.stdev(first_token_times)
if len(first_token_times) > 1
else 0
),
"std_response": (
statistics.stdev(response_times) if len(response_times) > 1 else 0
),
"errors": 0,
}
except Exception as e:
print(f"LLM {llm_name} 测试失败: {str(e)}")
return {"name": llm_name, "type": "llm", "errors": 1}
async def _test_single_sentence(self, llm_name: str, llm, sentence: str) -> Dict:
"""测试单个句子的性能"""
try:
print(f"📝 {llm_name} 开始测试: {sentence[:20]}...")
sentence_start = time.time()
first_token_received = False
first_token_time = None
async def process_response():
nonlocal first_token_received, first_token_time
for chunk in llm.response(
"perf_test", [{"role": "user", "content": sentence}]
):
if not first_token_received and chunk.strip() != "":
first_token_time = time.time() - sentence_start
first_token_received = True
print(f"{llm_name} 首个Token: {first_token_time:.3f}s")
yield chunk
response_chunks = []
async for chunk in process_response():
response_chunks.append(chunk)
response_time = time.time() - sentence_start
print(f"{llm_name} 完成响应: {response_time:.3f}s")
if first_token_time is None:
first_token_time = (
response_time # 如果没有检测到first token使用总响应时间
)
return {
"name": llm_name,
"type": "llm",
"first_token_time": first_token_time,
"response_time": response_time,
}
except Exception as e:
print(f"⚠️ {llm_name} 句子测试失败: {str(e)}")
return None
def _generate_combinations(self):
"""生成最佳组合建议"""
valid_llms = [
k
for k, v in self.results["llm"].items()
if v["errors"] == 0 and v["avg_first_token"] >= 0.05
]
valid_tts = [k for k, v in self.results["tts"].items() if v["errors"] == 0]
# 找出基准值
min_first_token = (
min([self.results["llm"][llm]["avg_first_token"] for llm in valid_llms])
if valid_llms
else 1
)
min_tts_time = (
min([self.results["tts"][tts]["avg_time"] for tts in valid_tts])
if valid_tts
else 1
)
for llm in valid_llms:
for tts in valid_tts:
# 计算相对性能分数(越小越好)
llm_score = (
self.results["llm"][llm]["avg_first_token"] / min_first_token
)
tts_score = self.results["tts"][tts]["avg_time"] / min_tts_time
# 计算稳定性分数(标准差/平均值,越小越稳定)
llm_stability = (
self.results["llm"][llm]["std_first_token"]
/ self.results["llm"][llm]["avg_first_token"]
)
# 综合得分(考虑性能和稳定性)
# 性能权重0.7稳定性权重0.3
llm_final_score = llm_score * 0.7 + llm_stability * 0.3
# 总分 = LLM得分(70%) + TTS得分(30%)
total_score = llm_final_score * 0.7 + tts_score * 0.3
self.results["combinations"].append(
{
"llm": llm,
"tts": tts,
"score": total_score,
"details": {
"llm_first_token": self.results["llm"][llm][
"avg_first_token"
],
"llm_stability": llm_stability,
"tts_time": self.results["tts"][tts]["avg_time"],
},
}
)
# 分数越小越好
self.results["combinations"].sort(key=lambda x: x["score"])
def _print_results(self):
"""打印测试结果"""
llm_table = []
for name, data in self.results["llm"].items():
if data["errors"] == 0:
stability = data["std_first_token"] / data["avg_first_token"]
llm_table.append(
[
name, # 不需要固定宽度让tabulate自己处理对齐
f"{data['avg_first_token']:.3f}",
f"{data['avg_response']:.3f}",
f"{stability:.3f}",
]
)
if llm_table:
print("\nLLM 性能排行:")
print(
tabulate(
llm_table,
headers=["模型名称", "首字耗时", "总耗时", "稳定性"],
tablefmt="github",
colalign=("left", "right", "right", "right"),
disable_numparse=True,
)
)
else:
print("\n⚠️ 没有可用的LLM模块进行测试。")
tts_table = []
for name, data in self.results["tts"].items():
if data["errors"] == 0:
tts_table.append([name, f"{data['avg_time']:.3f}"]) # 不需要固定宽度
if tts_table:
print("\nTTS 性能排行:")
print(
tabulate(
tts_table,
headers=["模型名称", "合成耗时"],
tablefmt="github",
colalign=("left", "right"),
disable_numparse=True,
)
)
else:
print("\n⚠️ 没有可用的TTS模块进行测试。")
if self.results["combinations"]:
print("\n推荐配置组合 (得分越小越好):")
combo_table = []
for combo in self.results["combinations"][:5]:
combo_table.append(
[
f"{combo['llm']} + {combo['tts']}", # 不需要固定宽度
f"{combo['score']:.3f}",
f"{combo['details']['llm_first_token']:.3f}",
f"{combo['details']['llm_stability']:.3f}",
f"{combo['details']['tts_time']:.3f}",
]
)
print(
tabulate(
combo_table,
headers=[
"组合方案",
"综合得分",
"LLM首字耗时",
"稳定性",
"TTS合成耗时",
],
tablefmt="github",
colalign=("left", "right", "right", "right", "right"),
disable_numparse=True,
)
)
else:
print("\n⚠️ 没有可用的模块组合建议。")
def _process_results(self, all_results):
"""处理测试结果"""
for result in all_results:
if result["errors"] == 0:
if result["type"] == "llm":
self.results["llm"][result["name"]] = result
else:
self.results["tts"][result["name"]] = result
async def run(self):
"""执行全量异步测试"""
print("🔍 开始筛选可用模块...")
# 创建所有测试任务
all_tasks = []
# LLM测试任务
for llm_name, config in self.config.get("LLM", {}).items():
# 检查配置有效性
if llm_name == "CozeLLM":
if any(x in config.get("bot_id", "") for x in ["你的"]) or any(
x in config.get("user_id", "") for x in ["你的"]
):
print(f"⏭️ LLM {llm_name} 未配置bot_id/user_id已跳过")
continue
elif "api_key" in config and any(
x in config["api_key"] for x in ["你的", "placeholder", "sk-xxx"]
):
print(f"⏭️ LLM {llm_name} 未配置api_key已跳过")
continue
# 对于Ollama先检查服务状态
if llm_name == "Ollama":
base_url = config.get("base_url", "http://localhost:11434")
model_name = config.get("model_name")
if not model_name:
print(f"🚫 Ollama未配置model_name")
continue
if not await self._check_ollama_service(base_url, model_name):
continue
print(f"📋 添加LLM测试任务: {llm_name}")
module_type = config.get("type", llm_name)
llm = create_llm_instance(module_type, config)
# 为每个句子创建独立任务
for sentence in self.test_sentences:
sentence = sentence.encode("utf-8").decode("utf-8")
all_tasks.append(self._test_single_sentence(llm_name, llm, sentence))
# TTS测试任务
for tts_name, config in self.config.get("TTS", {}).items():
token_fields = ["access_token", "api_key", "token"]
if any(
field in config
and any(x in config[field] for x in ["你的", "placeholder"])
for field in token_fields
):
print(f"⏭️ TTS {tts_name} 未配置access_token/api_key已跳过")
continue
print(f"🎵 添加TTS测试任务: {tts_name}")
all_tasks.append(self._test_tts(tts_name, config))
print(
f"\n✅ 找到 {len([t for t in all_tasks if 'test_single_sentence' in str(t)]) / len(self.test_sentences):.0f} 个可用LLM模块"
)
print(
f"✅ 找到 {len([t for t in all_tasks if '_test_tts' in str(t)])} 个可用TTS模块"
)
print("\n⏳ 开始并发测试所有模块...\n")
# 并发执行所有测试任务
all_results = await asyncio.gather(*all_tasks, return_exceptions=True)
# 处理LLM结果
llm_results = {}
for result in [
r
for r in all_results
if r and isinstance(r, dict) and r.get("type") == "llm"
]:
llm_name = result["name"]
if llm_name not in llm_results:
llm_results[llm_name] = {
"name": llm_name,
"type": "llm",
"first_token_times": [],
"response_times": [],
"errors": 0,
}
llm_results[llm_name]["first_token_times"].append(
result["first_token_time"]
)
llm_results[llm_name]["response_times"].append(result["response_time"])
# 计算LLM平均值和标准差
for llm_name, data in llm_results.items():
if len(data["first_token_times"]) >= len(self.test_sentences) * 0.5:
self.results["llm"][llm_name] = {
"name": llm_name,
"type": "llm",
"avg_response": sum(data["response_times"])
/ len(data["response_times"]),
"avg_first_token": sum(data["first_token_times"])
/ len(data["first_token_times"]),
"std_first_token": (
statistics.stdev(data["first_token_times"])
if len(data["first_token_times"]) > 1
else 0
),
"std_response": (
statistics.stdev(data["response_times"])
if len(data["response_times"]) > 1
else 0
),
"errors": 0,
}
# 处理TTS结果
for result in [
r
for r in all_results
if r and isinstance(r, dict) and r.get("type") == "tts"
]:
if result["errors"] == 0:
self.results["tts"][result["name"]] = result
# 生成组合建议并打印结果
print("\n📊 生成测试报告...")
self._generate_combinations()
self._print_results()
async def main():
tester = AsyncPerformanceTester()
await tester.run()
if __name__ == "__main__":
asyncio.run(main())