170 lines
6.2 KiB
Python
170 lines
6.2 KiB
Python
import re
|
||
from typing import List, Dict, Any
|
||
import requests
|
||
import psycopg2
|
||
from vanna.base import VannaBase
|
||
from Config import *
|
||
|
||
|
||
class VannaUtil(VannaBase):
|
||
def __init__(self, db_uri=None):
|
||
super().__init__()
|
||
self.api_key = MODEL_API_KEY
|
||
self.base_url = MODEL_GENERATION_TEXT_URL # 阿里云专用API地址
|
||
self.model = QWEN_MODEL_NAME # 根据实际模型名称调整
|
||
self.training_data = []
|
||
self.chat_history = []
|
||
self.db_uri = db_uri or VANNA_POSTGRESQL_URI # 默认 PostgreSQL 连接字符串
|
||
self._init_db()
|
||
|
||
def _init_db(self):
|
||
"""初始化 PostgreSQL 数据库连接"""
|
||
self.conn = psycopg2.connect(self.db_uri)
|
||
self._create_tables()
|
||
|
||
def _create_tables(self):
|
||
"""创建训练数据表"""
|
||
cursor = self.conn.cursor()
|
||
cursor.execute('''
|
||
CREATE TABLE IF NOT EXISTS training_data (
|
||
id SERIAL PRIMARY KEY,
|
||
type TEXT,
|
||
question TEXT,
|
||
sql TEXT,
|
||
content TEXT
|
||
)
|
||
''')
|
||
self.conn.commit()
|
||
|
||
def add_ddl(self, ddl: str, **kwargs) -> None:
|
||
"""添加 DDL"""
|
||
cursor = self.conn.cursor()
|
||
cursor.execute('INSERT INTO training_data (type, content) VALUES (%s, %s)', ('ddl', ddl))
|
||
self.conn.commit()
|
||
|
||
def add_documentation(self, doc: str, **kwargs) -> None:
|
||
"""添加文档"""
|
||
cursor = self.conn.cursor()
|
||
cursor.execute('INSERT INTO training_data (type, content) VALUES (%s, %s)', ('documentation', doc))
|
||
self.conn.commit()
|
||
|
||
def add_question_sql(self, question: str, sql: str, **kwargs) -> None:
|
||
"""添加问答对"""
|
||
cursor = self.conn.cursor()
|
||
cursor.execute('INSERT INTO training_data (type, question, sql) VALUES (%s, %s, %s)', ('qa', question, sql))
|
||
self.conn.commit()
|
||
|
||
def get_related_ddl(self, question: str, **kwargs) -> str:
|
||
"""获取相关 DDL"""
|
||
cursor = self.conn.cursor()
|
||
cursor.execute('SELECT content FROM training_data WHERE type = %s', ('ddl',))
|
||
return "\n".join(row[0] for row in cursor.fetchall())
|
||
|
||
def get_related_documentation(self, question: str, **kwargs) -> str:
|
||
"""获取相关文档"""
|
||
cursor = self.conn.cursor()
|
||
cursor.execute('SELECT content FROM training_data WHERE type = %s', ('documentation',))
|
||
return "\n".join(row[0] for row in cursor.fetchall())
|
||
|
||
def get_training_data(self, **kwargs) -> List[Dict[str, Any]]:
|
||
"""获取所有训练数据"""
|
||
cursor = self.conn.cursor()
|
||
cursor.execute('SELECT * FROM training_data')
|
||
columns = [column[0] for column in cursor.description]
|
||
return [dict(zip(columns, row)) for row in cursor.fetchall()]
|
||
|
||
def remove_training_data(self, id: str, **kwargs) -> bool:
|
||
"""删除训练数据"""
|
||
cursor = self.conn.cursor()
|
||
cursor.execute('DELETE FROM training_data WHERE id = %s', (id,))
|
||
self.conn.commit()
|
||
return cursor.rowcount > 0
|
||
|
||
def generate_embedding(self, text: str, **kwargs) -> List[float]:
|
||
"""生成嵌入向量"""
|
||
return []
|
||
|
||
def get_similar_question_sql(self, question: str, **kwargs) -> List[Dict[str, Any]]:
|
||
"""获取相似问答对"""
|
||
return []
|
||
|
||
def system_message(self, message: str) -> None:
|
||
"""添加系统消息"""
|
||
self.chat_history = [{"role": "system", "content": message}]
|
||
|
||
def user_message(self, message: str) -> None:
|
||
"""添加用户消息"""
|
||
self.chat_history.append({"role": "user", "content": message})
|
||
|
||
def assistant_message(self, message: str) -> None:
|
||
"""添加助手消息"""
|
||
self.chat_history.append({"role": "assistant", "content": message})
|
||
|
||
def submit_prompt(self, prompt: str, **kwargs) -> str:
|
||
"""提交提示词"""
|
||
return self.generate_sql(question=prompt)
|
||
|
||
def _clean_sql_output(self, raw_sql: str) -> str:
|
||
"""增强版清洗逻辑"""
|
||
# 移除所有非SQL内容
|
||
cleaned = re.sub(r'^.*?(?=SELECT)', '', raw_sql, flags=re.IGNORECASE | re.DOTALL)
|
||
# 提取第一个完整SQL语句
|
||
match = re.search(r'(SELECT\s.+?;)', cleaned, re.IGNORECASE | re.DOTALL)
|
||
if match:
|
||
# 标准化空格和换行
|
||
clean_sql = re.sub(r'\s+', ' ', match.group(1)).strip()
|
||
# 确保没有重复SELECT
|
||
clean_sql = re.sub(r'(SELECT\s+)+', 'SELECT ', clean_sql, flags=re.IGNORECASE)
|
||
return clean_sql
|
||
return raw_sql
|
||
|
||
def _build_sql_prompt(self, question: str) -> str:
|
||
"""强化提示词"""
|
||
return f"""严格按以下要求生成Postgresql查询:
|
||
|
||
表结构:
|
||
{self.get_related_ddl(question)}
|
||
|
||
问题:{question}
|
||
|
||
生成规则:
|
||
1. 只输出一个标准的SELECT语句
|
||
2. 绝对不要使用任何代码块标记
|
||
3. 语句以分号结尾
|
||
4. 不要包含任何解释或注释
|
||
5. 若需要多表查询,使用显式JOIN语法
|
||
6. 确保没有重复的SELECT关键字
|
||
"""
|
||
|
||
def generate_sql(self, question: str, **kwargs) -> str:
|
||
"""同步生成SQL"""
|
||
try:
|
||
headers = {
|
||
"Authorization": f"Bearer {self.api_key}",
|
||
"Content-Type": "application/json"
|
||
}
|
||
|
||
data = {
|
||
"model": self.model,
|
||
"input": {
|
||
"messages": [{
|
||
"role": "user",
|
||
"content": self._build_sql_prompt(question)
|
||
}]
|
||
},
|
||
"parameters": {
|
||
"temperature": 0.1,
|
||
"max_tokens": 5000,
|
||
"result_format": "text"
|
||
}
|
||
}
|
||
|
||
response = requests.post(self.base_url, headers=headers, json=data)
|
||
response.raise_for_status()
|
||
|
||
raw_sql = response.json()['output']['text']
|
||
return self._clean_sql_output(raw_sql)
|
||
|
||
except Exception as e:
|
||
print(f"\nAPI请求错误: {str(e)}")
|
||
return "" |