193 lines
5.7 KiB
Python
193 lines
5.7 KiB
Python
import asyncpg
|
||
|
||
|
||
# 删除数据
|
||
async def delete_question(db: asyncpg.Connection, question_id: str):
|
||
delete_sql = """
|
||
DELETE FROM t_bi_question WHERE id = $1
|
||
"""
|
||
await db.execute(delete_sql, question_id)
|
||
|
||
|
||
# 插入数据
|
||
async def insert_question(db: asyncpg.Connection, question_id: str, question: str):
|
||
insert_sql = """
|
||
INSERT INTO t_bi_question (id, question, state_id, is_system, is_collect)
|
||
VALUES ($1, $2, $3, $4, $5)
|
||
"""
|
||
await db.execute(insert_sql, question_id, question, 0, 0, 0)
|
||
|
||
|
||
# 修改数据
|
||
async def update_question_by_id(db: asyncpg.Connection, question_id: str, **kwargs):
|
||
update_fields = {k: v for k, v in kwargs.items() if v is not None}
|
||
if not update_fields:
|
||
return False
|
||
|
||
set_clause = ", ".join([f"{field} = ${i + 1}" for i, field in enumerate(update_fields.keys())])
|
||
sql = f"""
|
||
UPDATE t_bi_question
|
||
SET {set_clause}
|
||
WHERE id = ${len(update_fields) + 1}
|
||
"""
|
||
params = list(update_fields.values()) + [question_id]
|
||
|
||
try:
|
||
await db.execute(sql, *params)
|
||
return True
|
||
except Exception as e:
|
||
print(f"更新失败: {e}")
|
||
return False
|
||
|
||
|
||
# 根据问题 ID 查询 SQL
|
||
async def get_question_by_id(db: asyncpg.Connection, question_id: str):
|
||
select_sql = """
|
||
SELECT * FROM t_bi_question WHERE id = $1
|
||
"""
|
||
_data = await db.fetch(select_sql, question_id)
|
||
return _data
|
||
|
||
|
||
# 根据 SQL 查询数据
|
||
async def get_data_by_sql(db: asyncpg.Connection, sql: str):
|
||
_data = await db.fetch(sql)
|
||
return _data
|
||
|
||
|
||
# 保存系统推荐
|
||
async def set_system_recommend_questions(db: asyncpg.Connection, question_id: str, flag: str):
|
||
sql = """
|
||
UPDATE t_bi_question
|
||
SET is_system = $1 WHERE id = $2
|
||
"""
|
||
try:
|
||
await db.execute(sql, int(flag), question_id)
|
||
return True
|
||
except Exception as e:
|
||
print(f"更新失败: {e}")
|
||
return False
|
||
|
||
|
||
# 设置用户收藏
|
||
async def set_user_collect_questions(db: asyncpg.Connection, question_id: str, flag: str):
|
||
sql = """
|
||
UPDATE t_bi_question
|
||
SET is_collect = $1 WHERE id = $2
|
||
"""
|
||
try:
|
||
await db.execute(sql, int(flag), question_id)
|
||
return True
|
||
except Exception as e:
|
||
print(f"更新失败: {e}")
|
||
return False
|
||
|
||
|
||
# 查询系统推荐问题
|
||
async def get_system_recommend_questions(db: asyncpg.Connection, offset: int, limit: int):
|
||
query = """
|
||
SELECT *
|
||
FROM t_bi_question where is_system=1 ORDER BY id DESC LIMIT $1 OFFSET $2;
|
||
"""
|
||
return await db.fetch(query, limit, offset)
|
||
|
||
|
||
async def get_system_recommend_questions_count(db: asyncpg.Connection):
|
||
query = """
|
||
SELECT COUNT(*)
|
||
FROM t_bi_question where is_system=1;
|
||
"""
|
||
return await db.fetchval(query)
|
||
|
||
|
||
async def get_user_publish_questions(db: asyncpg.Connection, type_id: int, offset: int, limit: int):
|
||
# 基础查询
|
||
query = """
|
||
SELECT *
|
||
FROM t_bi_question
|
||
"""
|
||
|
||
# 根据 type_id 动态添加 WHERE 条件
|
||
if type_id == 1:
|
||
query += " WHERE is_collect = 1"
|
||
|
||
# 添加排序和分页
|
||
query += " ORDER BY id DESC LIMIT $1 OFFSET $2;"
|
||
|
||
# 执行查询
|
||
return await db.fetch(query, limit, offset)
|
||
|
||
|
||
async def get_user_publish_questions_count(db: asyncpg.Connection):
|
||
query = """
|
||
SELECT COUNT(*) FROM t_bi_question;
|
||
"""
|
||
return await db.fetchval(query)
|
||
|
||
|
||
# 获取数据集的字段名称
|
||
async def get_column_names(db: asyncpg.Connection, sql: str):
|
||
# 执行查询(添加 LIMIT 1)
|
||
sql = sql.replace(";", "")
|
||
sql = sql + ' limit 1'
|
||
result = await db.fetchrow(sql)
|
||
# 获取列名
|
||
# 获取列名
|
||
if result:
|
||
column_names = list(result.keys())
|
||
return column_names
|
||
else:
|
||
return []
|
||
|
||
|
||
from openai import OpenAI
|
||
|
||
from Config import MODEL_NAME, MODEL_API_KEY
|
||
|
||
# 初始化 OpenAI 客户端
|
||
client = OpenAI(
|
||
api_key=MODEL_API_KEY,
|
||
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
|
||
)
|
||
|
||
|
||
# 利用AI获取数据集的X轴和Y轴的列名
|
||
def generate_columns_with_ai(data):
|
||
"""
|
||
利用大模型解析数据,生成 category_columns_str 和 value_column_str
|
||
:param data: 数据集(列表字典格式,例如:[{"行政区划名": "二道区", "学校名称": "清华附中", "课程数量": 100}, ...])
|
||
:param api_key: OpenAI API 密钥
|
||
:return: (category_columns_str, value_column_str)
|
||
"""
|
||
# 获取所有字段名
|
||
columns = list(data[0].keys()) if data else []
|
||
|
||
# 构造提示词
|
||
prompt = f"""
|
||
给定以下字段名列表:{columns},请分析并回答以下问题:
|
||
1. 哪些字段适合作为分类字段(category_columns_str)?请用逗号分隔。
|
||
2. 哪个字段适合作为数值字段(value_column_str)?
|
||
3. 以JSON格式返回结果,但不要输出 json``` ,```
|
||
|
||
返回格式:
|
||
category_columns_str: <字段1,字段2,...>
|
||
value_column_str: <字段>
|
||
"""
|
||
|
||
# 调用大模型
|
||
response = client.chat.completions.create(
|
||
model=MODEL_NAME,
|
||
messages=[
|
||
{"role": "system",
|
||
"content": "你是一个专业的语义分类助手。"},
|
||
{"role": "user", "content": prompt}
|
||
],
|
||
max_tokens=500
|
||
)
|
||
|
||
# 解析模型返回的结果
|
||
result = response.choices[0].message.content
|
||
category_columns_str = result.split("category_columns_str: ")[1].split("\n")[0].strip()
|
||
value_column_str = result.split("value_column_str: ")[1].strip()
|
||
|
||
return category_columns_str, value_column_str |