from WxMini.Milvus.Config.MulvusConfig import * from WxMini.Milvus.Utils.MilvusCollectionManager import MilvusCollectionManager from WxMini.Milvus.Utils.MilvusConnectionPool import * from gensim.models import KeyedVectors import jieba import time from openai import OpenAI # 初始化 OpenAI 客户端 client = OpenAI( api_key=MODEL_API_KEY, base_url="https://dashscope.aliyuncs.com/compatible-mode/v1", ) # 1. 加载预训练的 Word2Vec 模型 model_path = MS_MODEL_PATH model = KeyedVectors.load_word2vec_format(model_path, binary=False, limit=MS_MODEL_LIMIT) print(f"模型加载成功,词向量维度: {model.vector_size}") # 功能:将文本转换为嵌入向量 def text_to_embedding(text): words = jieba.lcut(text) # 使用 jieba 分词 print(f"文本: {text}, 分词结果: {words}") embeddings = [model[word] for word in words if word in model] print(f"有效词向量数量: {len(embeddings)}") if embeddings: avg_embedding = sum(embeddings) / len(embeddings) print(f"生成的平均向量: {avg_embedding[:5]}...") # 打印前 5 维 return avg_embedding else: print("未找到有效词,返回零向量") return [0.0] * model.vector_size # 2. 使用连接池管理 Milvus 连接 milvus_pool = MilvusConnectionPool(host=MS_HOST, port=MS_PORT, max_connections=MS_MAX_CONNECTIONS) # 3. 从连接池中获取一个连接 connection = milvus_pool.get_connection() # 4. 初始化集合管理器 collection_name = MS_COLLECTION_NAME collection_manager = MilvusCollectionManager(collection_name) # 5. 输入一个用户问题 user_input = "我给你起的名字叫小云,记住你的名字,你是我的私人助理。" # 6. 调用大模型生成回复 try: response = client.chat.completions.create( model=MODEL_NAME, messages=[ {"role": "system", "content": "你是一个非常好的聊天伙伴,可以疏导用户,帮他解压,一句控制在20字以内。"}, {"role": "user", "content": user_input} ], max_tokens=500 ) if response.choices and response.choices[0].message.content: model_response = response.choices[0].message.content.strip() else: model_response = "大模型未返回有效结果" except Exception as e: model_response = f"调用大模型失败: {str(e)}" print(f"大模型回复: {model_response}") # 7. 获取当前时间和会话 ID timestamp = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) # 当前时间 person_id = "F9D1C319-215D-3B4E-FAA0-0E024AC12D3C" # 会话 ID(可以根据需要动态生成) # 8. 将用户问题转换为嵌入向量 user_embedding = text_to_embedding(user_input) # 9. 插入数据,确保字段顺序与集合定义一致 entities = [ [person_id], # person_id [user_input], # user_input [model_response], # model_response [timestamp], # timestamp [user_embedding] # embedding ] collection_manager.insert_data(entities) print("数据插入成功。") # 10. 释放连接 milvus_pool.release_connection(connection) # 11. 关闭连接池 milvus_pool.close()