#include "system_info.h" #include #include #include #include #include #include #include #include #define TAG "SystemInfo" size_t SystemInfo::GetFlashSize() { uint32_t flash_size; if (esp_flash_get_size(NULL, &flash_size) != ESP_OK) { ESP_LOGE(TAG, "Failed to get flash size"); return 0; } return (size_t)flash_size; } size_t SystemInfo::GetMinimumFreeHeapSize() { return esp_get_minimum_free_heap_size(); } size_t SystemInfo::GetFreeHeapSize() { return esp_get_free_heap_size(); } std::string SystemInfo::GetMacAddress() { uint8_t mac[6]; esp_read_mac(mac, ESP_MAC_WIFI_STA); char mac_str[18]; snprintf(mac_str, sizeof(mac_str), "%02x:%02x:%02x:%02x:%02x:%02x", mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]); return std::string(mac_str); } std::string SystemInfo::GetChipModelName() { return std::string(CONFIG_IDF_TARGET); } esp_err_t SystemInfo::PrintRealTimeStats(TickType_t xTicksToWait) { #define ARRAY_SIZE_OFFSET 5 TaskStatus_t *start_array = NULL, *end_array = NULL; UBaseType_t start_array_size, end_array_size; configRUN_TIME_COUNTER_TYPE start_run_time, end_run_time; esp_err_t ret; uint32_t total_elapsed_time; //Allocate array to store current task states start_array_size = uxTaskGetNumberOfTasks() + ARRAY_SIZE_OFFSET; start_array = (TaskStatus_t*)malloc(sizeof(TaskStatus_t) * start_array_size); if (start_array == NULL) { ret = ESP_ERR_NO_MEM; goto exit; } //Get current task states start_array_size = uxTaskGetSystemState(start_array, start_array_size, &start_run_time); if (start_array_size == 0) { ret = ESP_ERR_INVALID_SIZE; goto exit; } vTaskDelay(xTicksToWait); //Allocate array to store tasks states post delay end_array_size = uxTaskGetNumberOfTasks() + ARRAY_SIZE_OFFSET; end_array = (TaskStatus_t*)malloc(sizeof(TaskStatus_t) * end_array_size); if (end_array == NULL) { ret = ESP_ERR_NO_MEM; goto exit; } //Get post delay task states end_array_size = uxTaskGetSystemState(end_array, end_array_size, &end_run_time); if (end_array_size == 0) { ret = ESP_ERR_INVALID_SIZE; goto exit; } //Calculate total_elapsed_time in units of run time stats clock period. total_elapsed_time = (end_run_time - start_run_time); if (total_elapsed_time == 0) { ret = ESP_ERR_INVALID_STATE; goto exit; } printf("| Task | Run Time | Percentage\n"); //Match each task in start_array to those in the end_array for (int i = 0; i < start_array_size; i++) { int k = -1; for (int j = 0; j < end_array_size; j++) { if (start_array[i].xHandle == end_array[j].xHandle) { k = j; //Mark that task have been matched by overwriting their handles start_array[i].xHandle = NULL; end_array[j].xHandle = NULL; break; } } //Check if matching task found if (k >= 0) { uint32_t task_elapsed_time = end_array[k].ulRunTimeCounter - start_array[i].ulRunTimeCounter; uint32_t percentage_time = (task_elapsed_time * 100UL) / (total_elapsed_time * CONFIG_FREERTOS_NUMBER_OF_CORES); printf("| %-16s | %8lu | %4lu%%\n", start_array[i].pcTaskName, task_elapsed_time, percentage_time); } } //Print unmatched tasks for (int i = 0; i < start_array_size; i++) { if (start_array[i].xHandle != NULL) { printf("| %s | Deleted\n", start_array[i].pcTaskName); } } for (int i = 0; i < end_array_size; i++) { if (end_array[i].xHandle != NULL) { printf("| %s | Created\n", end_array[i].pcTaskName); } } ret = ESP_OK; exit: //Common return path free(start_array); free(end_array); return ret; }