main
HuangHai 4 months ago
parent d1adc7dff1
commit b4535e3faa

@ -1,24 +1,29 @@
# pip install gensim
# pip install gensim jieba
import time
import jieba # 导入 jieba 分词库
from WxMini.Milvus.Utils.MilvusCollectionManager import MilvusCollectionManager
from WxMini.Milvus.Utils.MilvusConnectionPool import *
from WxMini.Milvus.Config.MulvusConfig import *
from gensim.models import KeyedVectors
# 加载预训练的 Word2Vec 模型
model_path = "D:/Tencent_AILab_ChineseEmbedding/Tencent_AILab_ChineseEmbedding.txt" # 替换为你的 Word2Vec 模型路径
# 参考文档使用gensim之KeyedVectors操作词向量模型
# https://www.cnblogs.com/bill-h/p/14655224.html
# 读取词向量模型限定前10000个词
model = KeyedVectors.load_word2vec_format(model_path, binary=False, limit=10000)
print(f"模型加载成功,词向量维度: {model.vector_size}")
# 将文本转换为嵌入向量
def text_to_embedding(text):
words = text.split()
words = jieba.lcut(text) # 使用 jieba 分词
print(f"文本: {text}, 分词结果: {words}")
embeddings = [model[word] for word in words if word in model]
print(f"有效词向量数量: {len(embeddings)}")
if embeddings:
return sum(embeddings) / len(embeddings) # 取词向量的平均值
avg_embedding = sum(embeddings) / len(embeddings)
print(f"生成的平均向量: {avg_embedding[:5]}...") # 打印前 5 维
return avg_embedding
else:
return [0.0] * model.vector_size # 如果文本中没有有效词,返回零向量
print("未找到有效词,返回零向量")
return [0.0] * model.vector_size
# 1. 使用连接池管理 Milvus 连接
milvus_pool = MilvusConnectionPool(host=MS_HOST, port=MS_PORT, max_connections=MS_MAX_CONNECTIONS)
@ -45,7 +50,7 @@ search_params = {
"params": {"nprobe": 100} # 设置 IVF_FLAT 的 nprobe 参数
}
start_time = time.time()
results = collection_manager.search(current_embedding, search_params, limit=5) # 返回 5 条结果
results = collection_manager.search(current_embedding, search_params, limit=2) # 返回 2 条结果
end_time = time.time()
# 8. 输出查询结果

Loading…
Cancel
Save