diff --git a/AI/WxMini/Milvus/T1_create_collection.py b/AI/WxMini/Milvus/T1_create_collection.py index fa2e53b5..be3b4013 100644 --- a/AI/WxMini/Milvus/T1_create_collection.py +++ b/AI/WxMini/Milvus/T1_create_collection.py @@ -1,12 +1,8 @@ from pymilvus import FieldSchema, DataType, utility -from WxMini.Milvus.Utils.MilvusCollectionManager import MilvusCollectionManager -from WxMini.Milvus.Utils.MilvusConnectionPool import * -from WxMini.Milvus.Config.MulvusConfig import * -from pymilvus import FieldSchema, DataType, utility +from WxMini.Milvus.Config.MulvusConfig import * from WxMini.Milvus.Utils.MilvusCollectionManager import MilvusCollectionManager from WxMini.Milvus.Utils.MilvusConnectionPool import * -from WxMini.Milvus.Config.MulvusConfig import * # 1. 使用连接池管理 Milvus 连接 milvus_pool = MilvusConnectionPool(host=MS_HOST, port=MS_PORT, max_connections=MS_MAX_CONNECTIONS) diff --git a/AI/WxMini/Milvus/T3_insert_data.py b/AI/WxMini/Milvus/T3_insert_data.py index a45c688a..67a157f5 100644 --- a/AI/WxMini/Milvus/T3_insert_data.py +++ b/AI/WxMini/Milvus/T3_insert_data.py @@ -4,12 +4,6 @@ from WxMini.Milvus.Config.MulvusConfig import * from WxMini.Milvus.Utils.MilvusCollectionManager import MilvusCollectionManager from WxMini.Milvus.Utils.MilvusConnectionPool import * -import random - -from WxMini.Milvus.Config.MulvusConfig import * -from WxMini.Milvus.Utils.MilvusCollectionManager import MilvusCollectionManager -from WxMini.Milvus.Utils.MilvusConnectionPool import * - # 1. 使用连接池管理 Milvus 连接 milvus_pool = MilvusConnectionPool(host=MS_HOST, port=MS_PORT, max_connections=MS_MAX_CONNECTIONS) diff --git a/AI/WxMini/Milvus/T5_search_near_word.py b/AI/WxMini/Milvus/T5_search_near_word.py index f7e03aa5..354f9afd 100644 --- a/AI/WxMini/Milvus/T5_search_near_word.py +++ b/AI/WxMini/Milvus/T5_search_near_word.py @@ -29,7 +29,7 @@ results = collection_manager.search(current_embedding, search_params, limit=2) end_time = time.time() # 7. 输出查询结果 -print("当前对话的嵌入向量:", current_embedding) +#print("当前对话的嵌入向量:", current_embedding) print("最相关的历史对话:") if results: for hits in results: