main
HuangHai 4 months ago
parent 840156e590
commit 94d7fb817d

@ -1,12 +1,8 @@
from pymilvus import FieldSchema, DataType, utility
from WxMini.Milvus.Utils.MilvusCollectionManager import MilvusCollectionManager
from WxMini.Milvus.Utils.MilvusConnectionPool import *
from WxMini.Milvus.Config.MulvusConfig import *
from pymilvus import FieldSchema, DataType, utility
from WxMini.Milvus.Config.MulvusConfig import *
from WxMini.Milvus.Utils.MilvusCollectionManager import MilvusCollectionManager
from WxMini.Milvus.Utils.MilvusConnectionPool import *
from WxMini.Milvus.Config.MulvusConfig import *
# 1. 使用连接池管理 Milvus 连接
milvus_pool = MilvusConnectionPool(host=MS_HOST, port=MS_PORT, max_connections=MS_MAX_CONNECTIONS)

@ -4,12 +4,6 @@ from WxMini.Milvus.Config.MulvusConfig import *
from WxMini.Milvus.Utils.MilvusCollectionManager import MilvusCollectionManager
from WxMini.Milvus.Utils.MilvusConnectionPool import *
import random
from WxMini.Milvus.Config.MulvusConfig import *
from WxMini.Milvus.Utils.MilvusCollectionManager import MilvusCollectionManager
from WxMini.Milvus.Utils.MilvusConnectionPool import *
# 1. 使用连接池管理 Milvus 连接
milvus_pool = MilvusConnectionPool(host=MS_HOST, port=MS_PORT, max_connections=MS_MAX_CONNECTIONS)

@ -29,7 +29,7 @@ results = collection_manager.search(current_embedding, search_params, limit=2)
end_time = time.time()
# 7. 输出查询结果
print("当前对话的嵌入向量:", current_embedding)
#print("当前对话的嵌入向量:", current_embedding)
print("最相关的历史对话:")
if results:
for hits in results:

Loading…
Cancel
Save