main
黄海 5 months ago
parent b11f8f4032
commit 89be04782a

@ -11,11 +11,6 @@ from Config import *
class MarkdownGenerator:
"""Markdown教学大纲生成器"""
# 固定配置项
MODEL_R1 = "deepseek-r1"
MODEL_V3 = "deepseek-v3"
API_KEY = "sk-01d13a39e09844038322108ecdbd1bbc"
def __init__(
self,
course_name: str,
@ -61,8 +56,8 @@ class MarkdownGenerator:
)
return Generation.call(
model=self.MODEL_R1,
api_key=self.API_KEY,
model=MODEL_R1,
api_key=API_KEY,
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": f"请生成《{self.course_name}》教学大纲"}

@ -4,16 +4,16 @@ from typing import Optional, Tuple, Iterator
from openai import OpenAI, APIError, APITimeoutError
import time
import httpx
from Config import *
class ContentAnalyzer:
"""课程内容分析器(流式版本)"""
def __init__(
self,
api_key: str = "sk-01d13a39e09844038322108ecdbd1bbc",
base_url: str = "https://dashscope.aliyuncs.com/compatible-mode/v1",
model: str = "deepseek-r1",
api_key: str = API_KEY,
base_url: str = MODEL_URL,
model: str = MODEL_R1,
max_retries: int = 10,
initial_timeout: int = 300
):

@ -2,13 +2,14 @@ import os
import re
from typing import Iterator
from openai import OpenAI
from Config import *
class EnglishEssayAnalyzer:
def __init__(self):
self.client = OpenAI(
api_key=os.getenv("DEEPSEEK_API_KEY", "sk-01d13a39e09844038322108ecdbd1bbc"),
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1"
api_key=API_KEY,
base_url=MODEL_URL
)
def _build_prompt(self, essay: str) -> str:
@ -27,7 +28,7 @@ class EnglishEssayAnalyzer:
"""流式分析作文(新增关键方法)"""
try:
stream = self.client.chat.completions.create(
model="deepseek-r1",
model=MODEL_R1,
messages=[{
"role": "user",
"content": self._build_prompt(essay)
@ -140,4 +141,4 @@ if __name__ == "__main__":
# 保存Markdown报告
analyzer.save_markdown_report(result, "analysis_report.md")
print("\n\n✅ 分析结果已保存至 analysis_report.md")
print("\n\n✅ 分析结果已保存至 analysis_report.md")

@ -1,5 +1,13 @@
from pathlib import Path
# 阿里云中用来调用deepseek r1的密钥
API_KEY = "sk-01d13a39e09844038322108ecdbd1bbc"
# 固定配置项
MODEL_R1 = "deepseek-r1"
MODEL_V3 = "deepseek-v3"
MODEL_URL='https://dashscope.aliyuncs.com/compatible-mode/v1'
# 正确路径拼接方式
mdWorkingPath = Path(__file__).parent / 'md-file' / 'readme'
DEFAULT_TEMPLATE = mdWorkingPath / 'default.md' # 使用 / 运算符

@ -0,0 +1,84 @@
# -*- coding: utf-8 -*-
import time
from typing import Iterator, Optional
from dashscope import Generation
from dashscope.api_entities.dashscope_response import DashScopeAPIResponse
from Config import *
class KnowledgeGraph:
def __init__(
self,
shiti_content: str,
):
"""
初始化生成器
"""
self.shiti_content = shiti_content
def _generate_stream(self) -> Iterator[DashScopeAPIResponse]:
"""流式生成内容"""
system_prompt = (
'''
回答以下内容:
1这道题目有哪些知识点哪些能力点
2我准备把你返回的知识点和能力点存入到neo4j中去版本是neo4j-community-5.26.2,生成插入到数据库中的语句
'''
)
return Generation.call(
model=MODEL_R1,
api_key=API_KEY,
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": shiti_content}
],
result_format='message',
stream=True,
incremental_output=True
)
def run(self) -> bool:
"""执行生成流程"""
start_time = time.time()
spinner = ['', '', '', '', '', '', '', '', '', '']
content_buffer = []
try:
print(f"🚀 开始生成知识点和能力点的总结和插入语句")
responses = self._generate_stream()
for idx, response in enumerate(responses):
# 显示进度
print(f"\r{spinner[idx % 10]} 生成中({int(time.time() - start_time)}秒)", end="")
if response.status_code == 200 and response.output:
if chunk := response.output.choices[0].message.content:
content_buffer.append(chunk)
if len(content_buffer) == 1:
print("\n\n📝 内容生成开始:")
print(chunk, end="", flush=True)
# 保存结果
if content_buffer:
print(f"\n\n✅ 生成成功!耗时 {int(time.time() - start_time)}")
return True
return False
except Exception as e:
print(f"\n\n❌ 生成失败:{str(e)}")
return False
if __name__ == '__main__':
shiti_content='''
下面是一道小学三年级的数学题目巧求周长
把7个完全相同的小长方形拼成如图的样子已知每个小长方形的长是10厘米则拼成的大长方形的周长是多少厘米
'''
KnowledgeGraph = KnowledgeGraph(shiti_content)
KnowledgeGraph.run()

@ -29,4 +29,7 @@ https://help.aliyun.com/zh/ocr/developer-reference/api-ocr-api-2021-07-07-recogn
7. 尝试大模型+图数据库,实现知识点与能力点的智能总结,记录统计学生、教师与知识点能力点的关联关系,加速云校智能化进程。
8. 尝试提供支持多步推理和复杂查询的AI智能体服务教育理论研究。
https://m.sohu.com/a/855727104_129720
https://blog.csdn.net/qq_19841021/article/details/145503629
https://blog.csdn.net/qq_19841021/article/details/145503629
# 自动构建知识图谱
https://github.com/neo4j-labs/llm-graph-builder
Loading…
Cancel
Save