parent
dde4355238
commit
840156e590
@ -0,0 +1,52 @@
|
||||
import numpy as np
|
||||
import time
|
||||
from WxMini.Milvus.Utils.MilvusCollectionManager import MilvusCollectionManager
|
||||
from WxMini.Milvus.Utils.MilvusConnectionPool import *
|
||||
from WxMini.Milvus.Config.MulvusConfig import *
|
||||
# 1. 使用连接池管理 Milvus 连接
|
||||
milvus_pool = MilvusConnectionPool(host=MS_HOST, port=MS_PORT, max_connections=MS_MAX_CONNECTIONS)
|
||||
|
||||
# 2. 从连接池中获取一个连接
|
||||
connection = milvus_pool.get_connection()
|
||||
|
||||
# 3. 初始化集合管理器
|
||||
collection_name = MS_COLLECTION_NAME
|
||||
collection_manager = MilvusCollectionManager(collection_name)
|
||||
|
||||
# 4. 加载集合到内存
|
||||
collection_manager.load_collection()
|
||||
|
||||
# 5. 模拟当前对话的嵌入向量
|
||||
current_embedding = np.random.random(128).tolist() # 随机生成一个 128 维向量
|
||||
|
||||
# 6. 查询与当前对话最相关的历史对话
|
||||
search_params = {
|
||||
"metric_type": "L2", # 使用 L2 距离度量方式
|
||||
"params": {"nprobe": 100} # 设置 IVF_FLAT 的 nprobe 参数
|
||||
}
|
||||
start_time = time.time()
|
||||
results = collection_manager.search(current_embedding, search_params, limit=2)
|
||||
end_time = time.time()
|
||||
|
||||
# 7. 输出查询结果
|
||||
print("当前对话的嵌入向量:", current_embedding)
|
||||
print("最相关的历史对话:")
|
||||
if results:
|
||||
for hits in results:
|
||||
for hit in hits:
|
||||
try:
|
||||
text = collection_manager.query_text_by_id(hit.id)
|
||||
print(f"- {text} (距离: {hit.distance})")
|
||||
except Exception as e:
|
||||
print(f"查询失败: {e}")
|
||||
else:
|
||||
print("未找到相关历史对话,请检查查询参数或数据。")
|
||||
|
||||
# 8. 输出查询耗时
|
||||
print(f"查询耗时: {end_time - start_time:.4f} 秒")
|
||||
|
||||
# 9. 释放连接
|
||||
milvus_pool.release_connection(connection)
|
||||
|
||||
# 10. 关闭连接池
|
||||
milvus_pool.close()
|
Binary file not shown.
Loading…
Reference in new issue