parent
99fa38f1fe
commit
795ba9028f
@ -0,0 +1,12 @@
|
||||
MS_HOST = "10.10.14.101"
|
||||
MS_PORT = "19530"
|
||||
MS_COLLECTION_NAME = "ds_collection"
|
||||
MS_MAX_CONNECTIONS = 5
|
||||
# "dimension": 128
|
||||
# "index_file_size": 1024
|
||||
# "metric_type": "L2"
|
||||
# "nlist": 1024
|
||||
# "nprobe": 16
|
||||
# "topk": 10
|
||||
# "batch_size": 100
|
||||
# "index_type": "IVF_FLAT"
|
Binary file not shown.
@ -1,61 +0,0 @@
|
||||
# D:\anaconda3\envs\py310\Scripts\pip.exe install pymilvus
|
||||
from pymilvus import connections, FieldSchema, CollectionSchema, DataType, Collection, utility
|
||||
|
||||
# 1. 连接 Milvus
|
||||
connections.connect("default", host="10.10.14.101", port="19530")
|
||||
|
||||
# 2. 定义集合的字段和模式
|
||||
fields = [
|
||||
FieldSchema(name="id", dtype=DataType.INT64, is_primary=True, auto_id=True),
|
||||
FieldSchema(name="embedding", dtype=DataType.FLOAT_VECTOR, dim=128)
|
||||
]
|
||||
schema = CollectionSchema(fields, description="Simple demo collection")
|
||||
|
||||
# 3. 创建集合
|
||||
collection_name = "demo_collection"
|
||||
if utility.has_collection(collection_name):
|
||||
utility.drop_collection(collection_name) # 如果集合已存在,先删除
|
||||
|
||||
collection = Collection(name=collection_name, schema=schema)
|
||||
|
||||
# 4. 插入数据
|
||||
import random
|
||||
data = [
|
||||
[random.random() for _ in range(128)], # 第一个向量
|
||||
[random.random() for _ in range(128)], # 第二个向量
|
||||
[random.random() for _ in range(128)] # 第三个向量
|
||||
]
|
||||
entities = [data] # 插入的数据
|
||||
collection.insert(entities)
|
||||
|
||||
# 5. 创建索引
|
||||
index_params = {
|
||||
"index_type": "IVF_FLAT", # 索引类型
|
||||
"metric_type": "L2", # 距离度量方式
|
||||
"params": {"nlist": 128} # 索引参数
|
||||
}
|
||||
collection.create_index("embedding", index_params)
|
||||
|
||||
# 6. 加载集合到内存
|
||||
collection.load()
|
||||
|
||||
# 7. 查询数据
|
||||
query_vector = [random.random() for _ in range(128)] # 查询向量
|
||||
search_params = {
|
||||
"metric_type": "L2",
|
||||
"params": {"nprobe": 10} # 查询参数
|
||||
}
|
||||
results = collection.search(
|
||||
data=[query_vector], # 查询向量
|
||||
anns_field="embedding", # 查询字段
|
||||
param=search_params,
|
||||
limit=2 # 返回最相似的 2 个结果
|
||||
)
|
||||
|
||||
# 8. 输出查询结果
|
||||
for hits in results:
|
||||
for hit in hits:
|
||||
print(f"ID: {hit.id}, Distance: {hit.distance}")
|
||||
|
||||
# 9. 关闭连接
|
||||
connections.disconnect("default")
|
Loading…
Reference in new issue