|
|
|
|
from WxMini.Milvus.Config.MulvusConfig import *
|
|
|
|
|
from WxMini.Milvus.Utils.MilvusCollectionManager import MilvusCollectionManager
|
|
|
|
|
from WxMini.Milvus.Utils.MilvusConnectionPool import *
|
|
|
|
|
from gensim.models import KeyedVectors
|
|
|
|
|
import jieba
|
|
|
|
|
import time
|
|
|
|
|
|
|
|
|
|
# 1. 加载预训练的 Word2Vec 模型
|
|
|
|
|
model_path = MS_MODEL_PATH
|
|
|
|
|
model = KeyedVectors.load_word2vec_format(model_path, binary=False, limit=MS_MODEL_LIMIT)
|
|
|
|
|
print(f"模型加载成功,词向量维度: {model.vector_size}")
|
|
|
|
|
|
|
|
|
|
# 功能:将文本转换为嵌入向量
|
|
|
|
|
def text_to_embedding(text):
|
|
|
|
|
words = jieba.lcut(text) # 使用 jieba 分词
|
|
|
|
|
print(f"文本: {text}, 分词结果: {words}")
|
|
|
|
|
embeddings = [model[word] for word in words if word in model]
|
|
|
|
|
print(f"有效词向量数量: {len(embeddings)}")
|
|
|
|
|
if embeddings:
|
|
|
|
|
avg_embedding = sum(embeddings) / len(embeddings)
|
|
|
|
|
print(f"生成的平均向量: {avg_embedding[:5]}...") # 打印前 5 维
|
|
|
|
|
return avg_embedding
|
|
|
|
|
else:
|
|
|
|
|
print("未找到有效词,返回零向量")
|
|
|
|
|
return [0.0] * model.vector_size
|
|
|
|
|
|
|
|
|
|
# 2. 使用连接池管理 Milvus 连接
|
|
|
|
|
milvus_pool = MilvusConnectionPool(host=MS_HOST, port=MS_PORT, max_connections=MS_MAX_CONNECTIONS)
|
|
|
|
|
|
|
|
|
|
# 3. 从连接池中获取一个连接
|
|
|
|
|
connection = milvus_pool.get_connection()
|
|
|
|
|
|
|
|
|
|
# 4. 初始化集合管理器
|
|
|
|
|
collection_name = MS_COLLECTION_NAME
|
|
|
|
|
collection_manager = MilvusCollectionManager(collection_name)
|
|
|
|
|
|
|
|
|
|
# 5. 输入一个用户问题
|
|
|
|
|
user_input = input("请输入一句话:") # 例如:“我今天心情不太好”
|
|
|
|
|
model_response = "我没听懂,能再说一遍吗?" # 大模型的固定回复
|
|
|
|
|
timestamp = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) # 当前时间
|
|
|
|
|
session_id = "session_001" # 会话 ID(可以根据需要动态生成)
|
|
|
|
|
|
|
|
|
|
# 6. 将用户问题转换为嵌入向量
|
|
|
|
|
user_embedding = text_to_embedding(user_input)
|
|
|
|
|
|
|
|
|
|
# 7. 插入数据,确保字段顺序与集合定义一致
|
|
|
|
|
entities = [
|
|
|
|
|
[session_id], # session_id
|
|
|
|
|
[user_input], # user_input
|
|
|
|
|
[model_response], # model_response
|
|
|
|
|
[timestamp], # timestamp
|
|
|
|
|
[user_embedding] # embedding
|
|
|
|
|
]
|
|
|
|
|
collection_manager.insert_data(entities)
|
|
|
|
|
print("数据插入成功。")
|
|
|
|
|
|
|
|
|
|
# 8. 释放连接
|
|
|
|
|
milvus_pool.release_connection(connection)
|
|
|
|
|
|
|
|
|
|
# 9. 关闭连接池
|
|
|
|
|
milvus_pool.close()
|