You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

305 lines
11 KiB

5 months ago
import re
5 months ago
import uvicorn
from fastapi import FastAPI, Body
5 months ago
from fastapi.middleware.cors import CORSMiddleware
5 months ago
from fastapi.responses import StreamingResponse, PlainTextResponse
5 months ago
import socket
from openai import OpenAI
5 months ago
import markdown_to_json
import json
import asyncio
5 months ago
# 阿里云中用来调用 deepseek v3 的密钥
MODEL_API_KEY = "sk-01d13a39e09844038322108ecdbd1bbc"
5 months ago
MODEL_NAME = "qwen-plus"
5 months ago
# 初始化 OpenAI 客户端
client = OpenAI(
api_key=MODEL_API_KEY,
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
)
5 months ago
5 months ago
5 months ago
def markdown_to_dict(markdown_content):
"""
5 months ago
Markdown 内容转换为 Python 字典
5 months ago
"""
# 将 Markdown 转换为 JSON 字符串
json_content = markdown_to_json.jsonify(markdown_content)
# 解码 Unicode 转义
json_content = json_content.encode('utf-8').decode('unicode_escape')
# 将 JSON 字符串转换为字典
5 months ago
return json.loads(json_content)
5 months ago
5 months ago
5 months ago
def extract_level1(json_dict):
"""
提取一级目录生成指定格式的 JSON 对象列表
"""
# 获取第一个一级目录的名称
level1_title = next(iter(json_dict.keys()), None)
if level1_title:
5 months ago
return [{"type": "cover", "data": {"title": level1_title, "text": ""}}]
5 months ago
return []
5 months ago
5 months ago
def extract_level2_and_level3(json_dict, level1_title=None):
"""
提取指定一级目录下的二级目录及其三级目录内容生成指定格式的 JSON 对象列表
"""
# 如果没有指定一级目录,则使用第一个一级目录
if level1_title is None:
level1_title = next(iter(json_dict.keys()), None)
if level1_title and level1_title in json_dict:
result = []
for level2_title, level2_content in json_dict[level1_title].items():
5 months ago
result.append({"type": "transition", "data": {"title": level2_title, "text": level2_title}})
5 months ago
# 输出三级目录内容
if isinstance(level2_content, dict):
for level3_title, level3_items in level2_content.items():
# 确保 level3_items 是列表
if isinstance(level3_items, list):
5 months ago
items = []
for item in level3_items:
# 如果 item 是字符串,直接作为 title 和 text
if isinstance(item, str):
items.append({"title": item, "text": item})
# 如果 item 是字典,提取 title 和 text
elif isinstance(item, dict):
items.append({
"title": item.get("title", ""),
"text": item.get("text", "")
})
5 months ago
else:
5 months ago
# 如果 level3_items 不是列表,直接作为 title 和 text
items = [{"title": str(level3_items), "text": str(level3_items)}]
5 months ago
result.append({
"type": "content",
"data": {
"title": level3_title,
5 months ago
"text": level3_title,
5 months ago
"items": items
}
})
return result
return []
5 months ago
5 months ago
def extract_contents(json_dict, level1_title=None):
"""
提取所有二级目录名称生成目录部分的 JSON 对象
"""
# 如果没有指定一级目录,则使用第一个一级目录
if level1_title is None:
level1_title = next(iter(json_dict.keys()), None)
5 months ago
5 months ago
if level1_title and level1_title in json_dict:
# 获取所有二级目录名称
level2_titles = list(json_dict[level1_title].keys())
return {"type": "contents", "data": {"items": level2_titles}}
return {"type": "contents", "data": {"items": []}}
5 months ago
def expand_text_with_ai(json_dict):
"""
调用 AI 扩写每个有 title 属性的节点生成一句话描述并放到 text 属性上
"""
# 递归处理字典
def process_dict(d):
if isinstance(d, dict):
for key, value in d.items():
if key == "title" and isinstance(value, str):
# 基于全文和当前 title 生成一句话描述
prompt = f"基于以下内容,为标题 '{value}' 生成一句话描述,言简意赅,不要使用标点符号:\n{json.dumps(json_dict, ensure_ascii=False)}"
# 调用 AI 生成描述
response = client.chat.completions.create(
model=MODEL_NAME,
messages=[
{"role": "system", "content": "你是一个教学经验丰富的基础教育教师"},
{"role": "user", "content": prompt}
],
temperature=0.7
)
# 提取生成的描述
description = response.choices[0].message.content.strip()
# 去掉标点符号
description = re.sub(r'[^\w\s]', '', description)
# 将描述赋值给 text 属性
d["text"] = description
elif isinstance(value, dict):
process_dict(value)
elif isinstance(value, list):
for item in value:
process_dict(item)
elif isinstance(d, list):
for item in d:
process_dict(item)
# 处理整个字典
process_dict(json_dict)
return json_dict
5 months ago
async def ConvertMarkdownToJson(markdown_content):
"""
生成一个 AsyncIterable逐行返回 JSON 字符串
"""
# 将 Markdown 转换为字典
json_dict = markdown_to_dict(markdown_content)
5 months ago
# 调用 AI 扩写每个有 title 属性的节点
json_dict = expand_text_with_ai(json_dict)
5 months ago
# 提取一级目录
level1_json = extract_level1(json_dict)
5 months ago
print(level1_json)
5 months ago
for item in level1_json:
yield json.dumps(item, ensure_ascii=False)
await asyncio.sleep(0.5) # 控制逐行输出的速度
# 生成目录部分
contents_json = extract_contents(json_dict)
5 months ago
print(contents_json)
5 months ago
yield json.dumps(contents_json, ensure_ascii=False)
await asyncio.sleep(0.5)
# 提取二级目录及其三级目录内容
level2_and_level3_json = extract_level2_and_level3(json_dict)
5 months ago
print(level2_and_level3_json)
5 months ago
for item in level2_and_level3_json:
yield json.dumps(item, ensure_ascii=False)
await asyncio.sleep(0.5)
# 添加结束标记
yield '{"type": "end" }'
5 months ago
5 months ago
5 months ago
# 获取本机所有 IPv4 地址
def get_local_ips():
ips = []
hostname = socket.gethostname()
try:
# 获取所有 IP 地址
addrs = socket.getaddrinfo(hostname, None, family=socket.AF_INET) # 只获取 IPv4 地址
for addr in addrs:
ip = addr[4][0]
if ip not in ips:
ips.append(ip)
except Exception as e:
print(f"获取 IP 地址失败: {e}")
return ips
5 months ago
5 months ago
# 流式生成数据的函数
async def generate_stream_markdown(course_name: str):
5 months ago
"""
流式生成 Markdown 数据并在控制台输出完整的 Markdown 内容
"""
5 months ago
# 调用阿里云 API启用流式响应
stream = client.chat.completions.create(
model=MODEL_NAME,
messages=[
{'role': 'system', 'content': '你是一个教学经验丰富的基础教育教师'},
5 months ago
{'role': 'user',
'content': '帮我设计一下' + course_name + '的课件提纲用markdown格式返回。强调1、标签只能返回 #,##,###,-,其它标签一率不可以返回这个非常重要2、不要返回 ```markdown 或者 ``` 这样的内容! 3、每部分都有生成完整的一、二、三级内容不能省略。'}
5 months ago
],
stream=True, # 启用流式响应
timeout=6000,
)
5 months ago
# 初始化完整的 Markdown 内容
full_markdown = ""
5 months ago
# 逐字返回数据
for chunk in stream:
if chunk.choices[0].delta.content:
5 months ago
chunk_content = chunk.choices[0].delta.content
full_markdown += chunk_content # 拼接 Markdown 内容
for char in chunk_content:
5 months ago
yield char.encode("utf-8")
await asyncio.sleep(0.05) # 控制逐字输出的速度
5 months ago
# 在控制台输出完整的 Markdown 内容
print("\n完整的 Markdown 内容:")
print(full_markdown)
5 months ago
5 months ago
5 months ago
app = FastAPI()
5 months ago
# 添加 CORS 中间件
app.add_middleware(
CORSMiddleware,
5 months ago
allow_origins=["*"],
5 months ago
allow_credentials=True,
5 months ago
allow_methods=["*"],
allow_headers=["*"],
5 months ago
)
5 months ago
5 months ago
# 根路由,返回提示信息
@app.get("/")
def root():
return PlainTextResponse("Hello ApiStream")
5 months ago
5 months ago
@app.post("/api/tools/aippt_outline") # 仅支持 POST 方法
5 months ago
async def aippt_outline(
5 months ago
course_name: str = Body(..., embed=True, description="课程名称") # 从请求体中获取 course_name
5 months ago
):
# 返回流式响应
return StreamingResponse(
5 months ago
generate_stream_markdown(course_name),
5 months ago
media_type="text/event-stream",
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"Access-Control-Allow-Origin": "*",
"X-Accel-Buffering": "no"
}
)
5 months ago
5 months ago
5 months ago
@app.post("/api/tools/aippt") # 修改为 POST 方法
async def aippt(content: str = Body(..., embed=True, description="Markdown 内容")): # 使用 Body 接收请求体参数
5 months ago
return StreamingResponse(
5 months ago
ConvertMarkdownToJson(content), # 传入 content
5 months ago
media_type="text/plain", # 使用 text/plain 格式
5 months ago
headers={
5 months ago
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"Access-Control-Allow-Origin": "*",
"X-Accel-Buffering": "no",
"Content-Type": "text/plain; charset=utf-8" # 明确设置 Content-Type
5 months ago
}
)
5 months ago
5 months ago
# 运行应用
if __name__ == "__main__":
5 months ago
# # 获取本机所有 IPv4 地址
# ips = get_local_ips()
# if not ips:
# print("无法获取本机 IP 地址,使用默认地址 127.0.0.1")
# ips = ["127.0.0.1"]
#
# # 打印所有 IP 地址
# print("服务将在以下 IP 地址上运行:")
# for ip in ips:
# print(f"http://{ip}:5173")
#
# # 启动 FastAPI 应用,绑定到所有 IP 地址
# uvicorn.run(app, host="0.0.0.0", port=5173)
# 读取Sample.md
with open("Sample.md", "r", encoding="utf-8") as f:
markdown_content = f.read()
json_dict = markdown_to_dict(markdown_content)
# 调用 AI 扩写每个有 title 属性的节点
json_dict = expand_text_with_ai(json_dict)
print(json_dict)